Emmanuel Somm
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmanuel Somm.
Environmental Health Perspectives | 2009
Emmanuel Somm; Audrey Toulotte; Christopher R. Cederroth; Christophe Combescure; Serge Nef; Michel L. Aubert; Petra Susan Hüppi
Background The causes of the current obesity pandemic have not been fully elucidated. Implication of environmental endocrine disruptors such as bisphenol A (BPA) on adipose tissue development has been poorly investigated. Objectives The aim of the present study was to evaluate the effects of perinatal exposure to BPA on early adipose storage at weaning. Methods Pregnant Sprague-Dawley rats had access to drinking water containing 1 mg/L BPA from day 6 of gestation through the end of lactation. Pups were weaned on postnatal day (PND) 21. At that time, we investigated perigonadal adipose tissue of pups (weight, histology, gene expression). For the remaining animals, we recorded body weight and food intake for animals on either standard chow or a high-fat diet. Results Gestational exposure to BPA did not alter the sex ratio or litter size at birth. On PND1, the weight of male and female BPA-exposed pups was increased. On PND21, body weight was increased only in females, in which parametrial white adipose tissue (pWAT) weight was increased about 3-fold. This excess of pWAT was associated with adipocyte hypertrophy and overexpression of lipogenic genes such as C/EBP-α (CAAT enhancer binding protein alpha), PPAR-γ (peroxisome proliferator-activated receptor gamma), SREBP-1C (sterol regulatory element binding protein-1C), LPL (lipoprotein lipase), FAS (fatty acid synthase), and SCD-1 (stearoyl-CoA desaturase 1). In addition, gene expression of SREBP-1C, FAS, and ACC (acetyl-CoA carboxylase) was also increased in liver from BPA-exposed females at PND21, without a change in circulating lipids and glucose. After weaning, perinatal BPA exposure predisposed to overweight in a sex- and diet-dependent manner. We observed no change in food intake due to perinatal BPA exposure in rats on either standard chow or a high-fat diet. Conclusions Perinatal exposure to a low dose of BPA increased adipogenesis in females at weaning. Adult body weight may be programmed during early life, leading to changes dependent on the sex and the nutritional status. Although further studies are required to understand the mechanisms of BPA action in early life, these results are particularly important with regard to the increasing prevalence of childhood obesity and the context-dependent action of endocrine disruptors.
Endocrinology | 2008
Emmanuel Somm; Delphine M. Vauthay; Emily J. Camm; Chang Y. Chen; Jean-Paul Giacobino; Stéphane Sizonenko; Michel L. Aubert; Petra Susan Hüppi
Despite medical advice, 20-30% of female smokers continue to smoke during pregnancy. Epidemiological studies have associated maternal smoking with increased risk of obesity and type-2 diabetes in the offspring. In the present study, we investigated the impact of prenatal nicotine exposure (3 mg/kg in Sprague Dawley rats via osmotic Alzet minipumps) on the early endocrine pancreas and adipose tissue development in rat pups before weaning. Body weight, fat deposition, food intake and food efficiency, cold tolerance, spontaneous physical activity, glucose utilization, and insulin sensitivity were also examined at adulthood. Prenatal nicotine exposure led to a decrease in endocrine pancreatic islet size and number at 7 d of life (postnatal d 7), which corroborates with a decrease in gene expression of specific transcription factors such as pancreatic and duodenal homeobox 1, Pax-6, Nkx6.1, and of hormones such as insulin and glucagon. The prenatal nicotine exposure also led to an increase in epididymal white adipose tissue weight at weaning (postnatal d 21), and marked hypertrophy of adipocytes, with increased gene expression of proadipogenic transcription factors such as CAAT-enhancer-binding protein-alpha, peroxisome proliferator activated receptor-gamma, and sterol regulatory element binding protein-1C. These early tissue alterations led to significant metabolic consequences, as shown by increased body weight and fat deposition, increased food efficiency on high-fat diet, cold intolerance, reduced physical activity, and glucose intolerance combined with insulin resistance observed at adulthood. These results prove a direct association between fetal nicotine exposure and offspring metabolic syndrome with early signs of dysregulations of adipose tissue and pancreatic development.
Journal of Clinical Investigation | 2013
Emrush Rexhaj; Ariane Paoloni-Giacobino; Stefano F. Rimoldi; Daniel Guido Fuster; Manuel Anderegg; Emmanuel Somm; Elisa Bouillet; Yves Allemann; Claudio Sartori; Urs Scherrer
Children conceived by assisted reproductive technologies (ART) display a level of vascular dysfunction similar to that seen in children of mothers with preeclamspia. The long-term consequences of ART-associated vascular disorders are unknown and difficult to investigate in healthy children. Here, we found that vasculature from mice generated by ART display endothelial dysfunction and increased stiffness, which translated into arterial hypertension in vivo. Progeny of male ART mice also exhibited vascular dysfunction, suggesting underlying epigenetic modifications. ART mice had altered methylation at the promoter of the gene encoding eNOS in the aorta, which correlated with decreased vascular eNOS expression and NO synthesis. Administration of a deacetylase inhibitor to ART mice normalized vascular gene methylation and function and resulted in progeny without vascular dysfunction. The induction of ART-associated vascular and epigenetic alterations appeared to be related to the embryo environment; these alterations were possibly facilitated by the hormonally stimulated ovulation accompanying ART. Finally, ART mice challenged with a high-fat diet had roughly a 25% shorter life span compared with control animals. This study highlights the potential of ART to induce vascular dysfunction and shorten life span and suggests that epigenetic alterations contribute to these problems.
Reproductive Toxicology | 2011
Christelle Stouder; Emmanuel Somm; Ariane Paoloni-Giacobino
Alcohol exposure during pregnancy induces a range of disorders in the offspring. Methylation changes in imprinted genes may play a role in the teratogenic effects of alcohol. We evaluated the possible effects of alcohol administration in pregnant mice on the methylation pattern of 5 imprinted genes (H19, Gtl2, Peg1, Snrpn and Peg3) in somatic and sperm cell DNAs of the male offspring. The effects observed were a 3% (p < 0.005) decrease in the number of methylated CpGs of H19 in the F1 offspring sperm, a 4% (p < 0.005) decrease in the number of methylated CpGs of H19 in the F2 offspring brain and a 26% (p < 0.05) decrease in the mean sperm concentration. CpGs 1 and 2 of the H19 CTCF-binding site 2 exhibited significant methylation percentage losses. H19 CTCF-binding sites are important for the regulation of Igf2 gene expression. The hypomethylation of H19 may contribute to the decreased spermatogenesis in the offspring.
The Journal of Physiology | 2003
Aaron P. Russell; Emmanuel Somm; Manu Praz; Antoinette Crettenand; Oliver Hartley; Astrid Melotti; Jean-Paul Giacobino; Patrick Muzzin; Charles Gobelet; Olivier Dériaz
It has been proposed that mitochondrial uncoupling protein 3 (UCP3) behaves as an uncoupler of oxidative phosphorylation. In a cross‐sectional study, UCP3 protein levels were found to be lower in all fibre types of endurance‐trained cyclists as compared to healthy controls. This decrease was greatest in the type I oxidative fibres, and it was hypothesised that this may be due to the preferential recruitment of these fibres during endurance training. To test this hypothesis, we compared the effects of 6 weeks of endurance (ETr) and sprint (STr) running training on UCP3 mRNA expression and fibre‐type protein content using real‐time PCR and immunofluorescence techniques, respectively. UCP3 mRNA and protein levels were downregulated similarly in ETr and STr (UCP3 mRNA: by 65 and 50 %, respectively; protein: by 30 and 27 %, respectively). ETr significantly reduced UCP3 protein content in type I, IIa and IIx muscle fibres by 54, 29 and 16 %, respectively. STr significantly reduced UCP3 protein content in type I, IIa and IIx muscle fibres by 24, 31 and 26 %, respectively. The fibre‐type reductions in UCP3 due to ETr, but not STr, were significantly different from each other, with the effect being greater in type I than in type IIa, and in type IIa than in type IIx fibres. As a result, compared to STr, ETr reduced UCP3 expression significantly more in fibre type I and significantly less in fibre types IIx. This suggests that the more a fibre is recruited, the more it adapts to training by a decrease in its UCP3 expression. In addition, the more a fibre type depends on fatty acid β oxidation and oxidative phosphorylation, the more it responds to ETr by a decrease in its UCP3 content.
Molecular and Cellular Endocrinology | 2009
Emmanuel Somm; Philippe Klee
Fetal adverse environment, such as insufficient maternal nutrition, placental insufficiency and stress, alters organ development and leads to poor fetal growth, also called intrauterine growth retardation (IUGR). IUGR is associated with an increased risk of perinatal mortality and morbidity as well as late-onset metabolic diseases, such as obesity, diabetes and hypertension in adulthood. In the rodent model, IUGR can be induced by fetal caloric restriction, fetal protein restriction, by exposure to high levels of glucocorticoids or by restricted placental blood supply. Such experimental IUGR models show a decreased beta cell mass and lower pancreatic insulin content. Recent research has provided an insight into the mechanisms responsible for the loss of beta cells. Here we review models that give further details about the molecular determinants of fetal and postnatal pancreatic islet development that are required to understand the consequences of fetal insults.
Journal of Clinical Investigation | 2012
Emmanuel Somm; Nicolas Bonnet; Alberto Martinez; Philip Marks; Verity A Cadd; Mark Christopher Elliott; Audrey Toulotte; Serge Livio Ferrari; René Rizzoli; Petra Susan Hüppi; Elaine Harper; Shlomo Melmed; Roger Jones; Michel L. Aubert
Botulinum neurotoxins (BoNTs) are zinc endopeptidases that block release of the neurotransmitter acetylcholine in neuromuscular synapses through cleavage of soluble N-ethylmaleimide-sensitive fusion (NSF) attachment protein receptor (SNARE) proteins, which promote fusion of synaptic vesicles to the plasma membrane. We designed and tested a BoNT-derived targeted secretion inhibitor (TSI) targeting pituitary somatotroph cells to suppress growth hormone (GH) secretion and treat acromegaly. This recombinant protein, called SXN101742, contains a modified GH-releasing hormone (GHRH) domain and the endopeptidase domain of botulinum toxin serotype D (GHRH-LHN/D, where HN/D indicates endopeptidase and translocation domain type D). In vitro, SXN101742 targeted the GHRH receptor and depleted a SNARE protein involved in GH exocytosis, vesicle-associated membrane protein 2 (VAMP2). In vivo, administering SXN101742 to growing rats produced a dose-dependent inhibition of GH synthesis, storage, and secretion. Consequently, hepatic IGF1 production and resultant circulating IGF1 levels were reduced. Accordingly, body weight, body length, organ weight, and bone mass acquisition were all decreased, reflecting the biological impact of SXN101742 on the GH/IGF1 axis. An inactivating 2-amino acid substitution within the zinc coordination site of the endopeptidase domain completely abolished SXN101742 inhibitory actions on GH and IGF1. Thus, genetically reengineered BoNTs can be targeted to nonneural cells to selectively inhibit hormone secretion, representing a new approach to treating hormonal excess.
International Journal of Developmental Neuroscience | 2011
Nicolas Kunz; Emily J. Camm; Emmanuel Somm; Gregory Anton Lodygensky; Stéphanie Darbre; Michel L. Aubert; Petra Susan Hüppi; Stéphane Sizonenko; Rolf Gruetter
In recent years, considerable research has focused on the biological effect of endocrine‐disrupting chemicals. Bisphenol A (BPA) has been implicated as an endocrine‐disrupting chemical (EDC) due to its ability to mimic the action of endogenous estrogenic hormones.
Journal of Cardiopulmonary Rehabilitation | 2004
Aaron P. Russell; Emmanuel Somm; Richard Debigaré; Oliver Hartley; Denis Richard; Giacomo Gianni Giuseppe Gastaldi; Astrid Melotti; Annie Michaud; Jean-Paul Giacobino; Patrick Muzzin; Pierre LeBlanc; François Maltais
PURPOSE Findings recently have shown coupling protein-3 (UCP3) content to be decreased in the skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Uncoupling protein-3 mRNA exists as two isoforms: long (UCP3L) and short (UCP3S). The UCP3 protein is expressed the least in oxidative and the most in glycolytic muscle fibers. Levels of UCP3 have been associated positively with intramyocellular triglyceride (IMTG) contents in conditions of altered fatty acid metabolism. As a source for muscle free fatty acid metabolism, IMTG is decreased in COPD. The current study completely characterized all the parameters of UCP3 expression (ie, UCP3L and UCP3S mRNA expression in whole muscle samples) and UCP3 protein content as well as IMTG content in the different fiber types in patients with COPD and healthy control subjects. METHODS Using real-time polymerase chain reaction, UCP3 gene expression was quantified. Skeletal muscle fiber type and UCP3 protein and IMTG content were measured using immunofluorescence and Oil red oil staining, respectively. RESULTS The findings showed that UCP3L mRNA expression was 44% lower (P < .005) in the patients with COPD than in the control subjects, whereas the UCP3S mRNA content was similar in the two groups. As compared with control subjects, UCP3 protein content was decreased by 89% and 83% and the IMTG content by 64% and 54%, respectively, in types I and IIa fibers (P < .0167) of patients with COPD, whereas they were unchanged in IIx fibers. CONCLUSIONS The reduced UCP3 and IMTG content in the more oxidative fibers may be linked to the altered muscle fatty acid metabolism associated with COPD. Further studies are required to determine the exact role and clinical relevance of the reduced UCP3 content in patients with COPD.
Reproductive Toxicology | 2013
Emmanuel Somm; Christelle Stouder; Ariane Paoloni-Giacobino
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an endocrine disruptor affecting the reproductive system in humans. The aim of this study was to evaluate the effects of TCDD administered to pregnant mice at two different doses (2-10 ng/kg/day), on imprinted genes in the male offspring. The degree of methylation and the mRNA expression of Snrpn, Peg3 and Igf2r were analyzed in the sperm, skeletal muscle and liver. TCDD administration (10 ng/kg/day) decreased the sperm count in the male offspring. It did not affect methylation but increased mRNA expression of Snrpn, Peg3, Igf2r and Air ncRNA. In muscle and liver, TCDD (10 ng/kg/day) induced increases in methylation and decreases in mRNA expression of Igf2r. These results show that the robust effects of TCDD on the mRNA expression of Snrpn, Peg3 and Igf2r genes in the sperm and of Igf2r in the muscle and liver are unrelated to changes in methylation in their respective genes.