Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuelle Jouanguy is active.

Publication


Featured researches published by Emmanuelle Jouanguy.


The New England Journal of Medicine | 1996

Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection.

Emmanuelle Jouanguy; Frédéric Altare; Salma Lamhamedi; Patrick Revy; Jean-François Emile; Melanie J. Newport; Michael Levin; Stéphane Blanche; Eric Seboun; Alain Fischer; Jean-Laurent Casanova

The attenuated strain of Mycobacterium bovis bacille Calmette–Guerin (BCG) is the most widely used vaccine in the world. In most children, inoculation of live BCG vaccine is harmless although it oc...


Science | 2007

TLR3 Deficiency in Patients with Herpes Simplex Encephalitis

Shen-Ying Zhang; Emmanuelle Jouanguy; Sophie Ugolini; Asma Smahi; Gaelle Elain; Pedro Romero; David M. Segal; Vanessa Sancho-Shimizu; Lazaro Lorenzo; Anne Puel; Capucine Picard; Ariane Chapgier; Sabine Plancoulaine; Matthias Titeux; Céline Cognet; Horst von Bernuth; Cheng Lung Ku; Armanda Casrouge; Xin Xin Zhang; Luis B. Barreiro; Joshua N. Leonard; Claire Hamilton; Pierre Lebon; Bénédicte Héron; Louis Vallée; Lluis Quintana-Murci; Alain Hovnanian; Flore Rozenberg; Eric Vivier; Frédéric Geissmann

Some Toll and Toll-like receptors (TLRs) provide immunity to experimental infections in animal models, but their contribution to host defense in natural ecosystems is unknown. We report a dominant-negative TLR3 allele in otherwise healthy children with herpes simplex virus 1 (HSV-1) encephalitis. TLR3 is expressed in the central nervous system (CNS), where it is required to control HSV-1, which spreads from the epithelium to the CNS via cranial nerves. TLR3 is also expressed in epithelial and dendritic cells, which apparently use TLR3-independent pathways to prevent further dissemination of HSV-1 and to provide resistance to other pathogens in TLR3-deficient patients. Human TLR3 appears to be redundant in host defense to most microbes but is vital for natural immunity to HSV-1 in the CNS, which suggests that neurotropic viruses have contributed to the evolutionary maintenance of TLR3.


Nature Genetics | 2003

Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency.

Stéphanie Dupuis; Emmanuelle Jouanguy; Sami Al-Hajjar; Claire Fieschi; Ibrahim Al-Mohsen; Suliman Al-Jumaah; Kun Yang; Ariane Chapgier; Céline Eidenschenk; Pierre Eid; Abdulaziz Al Ghonaium; Haysam Tufenkeji; Husn H. Frayha; Suleiman Al-Gazlan; Hassan Al-Rayes; Robert D. Schreiber; Ion Gresser; Jean-Laurent Casanova

The receptors for interferon-α/β (IFN-α/β) and IFN-γ activate components of the Janus kinase–signal transducer and activator of transcription (JAK–STAT) signaling pathway, leading to the formation of at least two transcription factor complexes. STAT1 interacts with STAT2 and p48/IRF-9 to form the transcription factor IFN-stimulated gene factor 3 (ISGF3). STAT1 dimers form γ-activated factor (GAF). ISGF3 is induced mainly by IFN-α/β, and GAF by IFN-γ, although both factors can be activated by both types of IFN. Individuals with mutations in either chain of the IFN-γ receptor (IFN-γR) are susceptible to infection with mycobacteria. A heterozygous STAT1 mutation that impairs GAF but not ISGF3 activation has been found in other individuals with mycobacterial disease. No individuals with deleterious mutations in the IFN-α/β signaling pathway have been described. We report here two unrelated infants homozygous with respect to mutated STAT1 alleles. Neither IFN-α/β nor IFN-γ activated STAT1-containing transcription factors. Like individuals with IFN-γR deficiency, both infants suffered from mycobacterial disease, but unlike individuals with IFN-γR deficiency, both died of viral disease. Viral multiplication was not inhibited by recombinant IFN-α/β in cell lines from the two individuals. Inherited impairment of the STAT1-dependent response to human IFN-α/β thus results in susceptibility to viral disease.


Journal of Experimental Medicine | 2011

Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis

Luyan Liu; Satoshi Okada; Xiao Fei Kong; Alexandra Y. Kreins; Sophie Cypowyj; Avinash Abhyankar; Julie Toubiana; Yuval Itan; Patrick Nitschke; Cécile Masson; Beáta Tóth; Jérome Flatot; Mélanie Migaud; Maya Chrabieh; Tatiana Kochetkov; Alexandre Bolze; Alessandro Borghesi; Antoine Toulon; Julia Hiller; Stefanie Eyerich; Kilian Eyerich; Vera Gulácsy; Ludmyla Chernyshova; Viktor Chernyshov; Anastasia Bondarenko; Rosa María Cortés Grimaldo; Lizbeth Blancas-Galicia; Ileana Maria Madrigal Beas; Joachim Roesler; Klaus Magdorf

Whole-exome sequencing reveals activating STAT1 mutations in some patients with autosomal dominant chronic mucocutaneous candidiasis disease.


Nature Genetics | 1999

A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection

Emmanuelle Jouanguy; Salma Lamhamedi-Cherradi; David A. Lammas; Susan E. Dorman; Marie Claude Fondanèche; Stéphanie Dupuis; Rainer Döffinger; Frédéric Altare; John Girdlestone; Jean-François Emile; Henri Ducoulombier; David Edgar; Jane Clarke; Vivi Anne Oxelius; Melchiorre Brai; Vas Novelli; Klaus Heyne; Alain Fischer; Steven M. Holland; Dinakantha Kumararatne; Robert D. Schreiber; Jean-Laurent Casanova

The immunogenetic basis of severe infections caused by bacille Calmette-Guérin vaccine and environmental mycobacteria in humans remains largely unknown. We describe 18 patients from several generations of 12 unrelated families who were heterozygous for 1 to 5 overlapping IFNGR1 frameshift small deletions and a wild-type IFNGR1 allele. There were 12 independent mutation events at a single mutation site, defining a small deletion hotspot. Neighbouring sequence analysis favours a small deletion model of slipped mispairing events during replication. The mutant alleles encode cell-surface IFNγ receptors that lack the intra-cytoplasmic domain, which, through a combination of impaired recycling, abrogated signalling and normal binding to IFNγ exert a dominant-negative effect. We thus report a hotspot for human IFNGR1 small deletions that confer dominant susceptibility to infections caused by poorly virulent mycobacteria.


Nature Immunology | 2005

The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila

Catherine Dostert; Emmanuelle Jouanguy; Phil Irving; Laurent Troxler; Delphine Galiana-Arnoux; Charles Hetru; Jules A. Hoffmann; Jean-Luc Imler

The response of drosophila to bacterial and fungal infections involves two signaling pathways, Toll and Imd, which both activate members of the transcription factor NF-κB family. Here we have studied the global transcriptional response of flies to infection with drosophila C virus. Viral infection induced a set of genes distinct from those regulated by the Toll or Imd pathways and triggered a signal transducer and activator of transcription (STAT) DNA-binding activity. Genetic experiments showed that the Jak kinase Hopscotch was involved in the control of the viral load in infected flies and was required but not sufficient for the induction of some virus-regulated genes. Our results indicate that in addition to Toll and Imd, a third, evolutionary conserved innate immunity pathway functions in drosophila and counters viral infection.


Journal of Clinical Investigation | 1998

Inherited interleukin 12 deficiency in a child with bacille Calmette-Guérin and Salmonella enteritidis disseminated infection.

Frédéric Altare; David A. Lammas; Patrick Revy; Emmanuelle Jouanguy; Rainer Döffinger; Salma Lamhamedi; Pamela Drysdale; D Scheel-Toellner; John Girdlestone; P Darbyshire; M Wadhwa; H Dockrell; M Salmon; Alain Fischer; Anne Durandy; Jean-Laurent Casanova; Dinakhanta S. Kumararatne

Interferon-gamma receptor ligand-binding chain (IFN-gammaR1) or signaling chain (IFN-gammaR2) deficiency, like interleukin 12 receptor beta1 chain (IL-12Rbeta1) deficiency, predispose to severe infections due to poorly virulent mycobacteria and salmonella. A child with bacille Calmette-Guérin and Salmonella enteritidis infection was investigated. Mutations in the genes for IFN-gammaR1, IFN-gammaR2, IL-12Rbeta1, and other molecules implicated in IL-12- or IFN-gamma-mediated immunity were sought. A large homozygous deletion within the IL-12 p40 subunit gene was found, precluding expression of functional IL-12 p70 cytokine by activated dendritic cells and phagocytes. As a result, IFN-gamma production by lymphocytes was markedly impaired. This is the first discovered human disease resulting from a cytokine gene defect. It suggests that IL-12 is essential to and appears specific for protective immunity to intracellular bacteria such as mycobacteria and salmonella.


Journal of Clinical Investigation | 1997

Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis.

Emmanuelle Jouanguy; Salma Lamhamedi‐Cherradi; Frédéric Altare; Marie-Claude Fondanèche; David Tuerlinckx; Stéphane Blanche; Jean-François Emile; Jean-Louis Gaillard; Robert D. Schreiber; Michael Levin; Alain Fischer; Claire Hivroz; Jean-Laurent Casanova

Complete interferon-gamma receptor 1 (IFNgammaR1) deficiency has been identified previously as a cause of fatal bacillus Calmette-Guérin (BCG) infection with lepromatoid granulomas, and of disseminated nontuberculous mycobacterial (NTM) infection in children who had not been inoculated with BCG. We report here a kindred with partial IFNgammaR1 deficiency: one child afflicted by disseminated BCG infection with tuberculoid granulomas, and a sibling, who had not been inoculated previously with BCG, with clinical tuberculosis. Both responded to antimicrobials and are currently well without prophylactic therapy. Impaired response to IFN-gamma was documented in B cells by signal transducer and activator of transcription 1 nuclear translocation, in fibroblasts by cell surface HLA class II induction, and in monocytes by cell surface CD64 induction and TNF-alpha secretion. Whereas cells from healthy children responded to even low IFN-gamma concentrations (10 IU/ml), and cells from a child with complete IFNgammaR1 deficiency did not respond to even high IFN-gamma concentrations (10,000 IU/ml), cells from the two siblings did not respond to low or intermediate concentrations, yet responded to high IFN-gamma concentrations. A homozygous missense IFNgR1 mutation was identified, and its pathogenic role was ascertained by molecular complementation. Thus, whereas complete IFNgammaR1 deficiency in previously identified kindreds caused fatal lepromatoid BCG infection and disseminated NTM infection, partial IFNgammaR1 deficiency in this kindred caused curable tuberculoid BCG infection and clinical tuberculosis.


Current Opinion in Immunology | 1999

IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men.

Emmanuelle Jouanguy; Rainer Döffinger; Stéphanie Dupuis; Annaïck Pallier; Frédéric Altare; Jean-Laurent Casanova

The development of gene-knockout mice and the identification of gene-deficient humans have improved our understanding of the role of IL-12 and IFN-gamma in host defense. Comparison of experimental and natural infections has shown that animals and humans genetically deficient in immunity mediated by IL-12 or IFN-gamma are highly susceptible to mycobacteria and salmonella. Impaired secretion of, or response to, IFN-gamma is the common pathogenic mechanism that accounts for impaired granuloma formation and uncontrolled growth of bacteria within macrophages. The axis formed between IL-12 and IFN-gamma is essential for protective immunity against mycobacteria and salmonella in mice and men.


Immunity | 2005

Human TLR-7-, -8-, and -9-Mediated Induction of IFN-α/β and -λ Is IRAK-4 Dependent and Redundant for Protective Immunity to Viruses

Kun Yang; Anne Puel; Shen-Ying Zhang; Céline Eidenschenk; Cheng Lung Ku; Armanda Casrouge; Capucine Picard; Horst von Bernuth; Brigitte Senechal; Sabine Plancoulaine; Sami Al-Hajjar; Abdulaziz Al-Ghonaium; László Maródi; Donald J. Davidson; David P. Speert; Chaim Roifman; Ben Zion Garty; Adrian Ozinsky; Franck J. Barrat; Robert L. Coffman; Richard L. Miller; Xiaoxia Li; Pierre Lebon; Carlos Rodríguez-Gallego; Helen Chapel; Frédéric Geissmann; Emmanuelle Jouanguy; Jean-Laurent Casanova

Summary Five TLRs are thought to play an important role in antiviral immunity, sensing viral products and inducing IFN-α/β and -λ. Surprisingly, patients with a defect of IRAK-4, a critical kinase downstream from TLRs, are resistant to common viruses. We show here that IFN-α/β and -λ induction via TLR-7, TLR-8, and TLR-9 was abolished in IRAK-4-deficient blood cells. In contrast, IFN-α/β and -λ were induced normally by TLR-3 and TLR-4 agonists. Moreover, IFN-β and -λ were normally induced by TLR-3 agonists and viruses in IRAK-4-deficient fibroblasts. We further show that IFN-α/β and -λ production in response to 9 of 11 viruses tested was normal or weakly affected in IRAK-4-deficient blood cells. Thus, IRAK-4-deficient patients may control viral infections by TLR-3- and TLR-4-dependent and/or TLR-independent production of IFNs. The TLR-7-, TLR-8-, and TLR-9-dependent induction of IFN-α/β and -λ is strictly IRAK-4 dependent and paradoxically redundant for protective immunity to most viruses in humans.

Collaboration


Dive into the Emmanuelle Jouanguy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Capucine Picard

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Laurent Abel

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anne Puel

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Alain Fischer

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Shen-Ying Zhang

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salma Lamhamedi

Necker-Enfants Malades Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge