Emmy W. Verschuren
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmy W. Verschuren.
Nature Genetics | 2005
Maria Christophorou; Dionisio Martin-Zanca; Laura Soucek; Elizabeth R. Lawlor; Lamorna Brown-Swigart; Emmy W. Verschuren; Gerard I. Evan
To investigate the functions of the p53 tumor suppressor, we created a new knock-in gene replacement mouse model in which the endogenous Trp53 gene is substituted by one encoding p53ERTAM, a p53 fusion protein whose function is completely dependent on ectopic provision of 4-hydroxytamoxifen. We show here that both tissues in vivo and cells in vitro derived from such mice can be rapidly toggled between wild-type and p53 knockout states. Using this rapid perturbation model, we define the kinetics, dependence, persistence and reversibility of p53-mediated responses to DNA damage in tissues in vivo and to activation of the Ras oncoprotein and stress in vitro. This is the first example to our knowledge of a new class of genetic model that allows the specific, rapid and reversible perturbation of the function of a single endogenous gene in vivo.
Cell | 2006
Adam G. Eldridge; Alexander V. Loktev; David V. Hansen; Emmy W. Verschuren; Julie D.R. Reimann; Peter K. Jackson
The anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 controls progression to S phase and mitosis by stabilizing key APC/C ubiquitination substrates, including cyclin A. Examining Emi1 binding proteins, we identified the Evi5 oncogene as a regulator of Emi1 accumulation. Evi5 antagonizes SCF(betaTrCP)-dependent Emi1 ubiquitination and destruction by binding to a site adjacent to Emi1s DSGxxS degron and blocking both degron phosphorylation by Polo-like kinases and subsequent betaTrCP binding. Thus, Evi5 functions as a stabilizing factor maintaining Emi1 levels in S/G2 phase. Evi5 protein accumulates in early G1 following Plk1 destruction and is degraded in a Plk1- and ubiquitin-dependent manner in early mitosis. Ablation of Evi5 induces precocious degradation of Emi1 by the Plk/SCF(betaTrCP) pathway, causing premature APC/C activation; cyclin destruction; cell-cycle arrest; centrosome overduplication; and, finally, mitotic catastrophe. We propose that the balance of Evi5 and Polo-like kinase activities determines the timely accumulation of Emi1 and cyclin, ensuring mitotic fidelity.
Journal of Cell Biology | 2007
Petros Marangos; Emmy W. Verschuren; Ruby Chen; Peter K. Jackson; John Carroll
Mammalian oocytes are arrested in prophase of the first meiotic division. Progression into the first meiotic division is driven by an increase in the activity of maturation-promoting factor (MPF). In mouse oocytes, we find that early mitotic inhibitor 1 (Emi1), an inhibitor of the anaphase-promoting complex (APC) that is responsible for cyclin B destruction and inactivation of MPF, is present at prophase I and undergoes Skp1–Cul1–F-box/βTrCP-mediated destruction immediately after germinal vesicle breakdown (GVBD). Exogenous Emi1 or the inhibition of Emi1 destruction in prophase-arrested oocytes leads to a stabilization of cyclin B1–GFP that is sufficient to trigger GVBD. In contrast, the depletion of Emi1 using morpholino oligonucleotides increases cyclin B1–GFP destruction, resulting in an attenuation of MPF activation and a delay of entry into the first meiotic division. Finally, we show that Emi1-dependent effects on meiosis I require the presence of Cdh1. These observations reveal a novel mechanism for the control of entry into the first meiotic division: an Emi1-dependent inhibition of APCCdh1.
Cancer Research | 2004
Emmy W. Verschuren; J. Graeme Hodgson; Joe W. Gray; Scott C. Kogan; Nic Jones; Gerard I. Evan
Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes a cyclin D homolog, K cyclin, that is thought to promote viral oncogenesis. However, expression of K cyclin in cultured cells not only triggers cell cycle progression but also engages the p53 tumor suppressor pathway, which probably restricts the oncogenic potential of K cyclin. Therefore, to assess the tumorigenic properties of K cyclin in vivo, we transgenically targeted expression of K cyclin to the B and T lymphocyte compartments via the Eμ promoter/enhancer. Around 17% of Eμ-K cyclin animals develop lymphoma by 9 months of age, and all such lymphomas exhibit loss of p53. A critical role of p53 in suppressing K cyclin-induced lymphomagenesis was confirmed by the greatly accelerated onset of B and T lymphomagenesis in all Eμ-K cyclin/p53−/− mice. However, absence of p53 did not appear to accelerate K cyclin-induced lymphomagenesis by averting apoptosis: Eμ-K cyclin/p53−/− end-stage lymphomas contained abundant apoptotic cells, and transgenic Eμ-K cyclin/p53−/− lymphocytes in vitro were not measurably protected from DNA damage-induced apoptosis compared with Eμ-K cyclin/p53wt cells. Notably, whereas aneuploidy was frequently evident in pre-lymphomatous tissues, end-stage Eμ-K cyclin/p53−/− tumors showed a near-diploid DNA content with no aberrant centrosome numbers. Nonetheless, such tumor cells did harbor more restricted genomic alterations, such as single-copy chromosome losses or gains or high-level amplifications. Together, our data support a model in which K cyclin-induced genome instability arises early in the pre-tumorigenic lymphocyte population and that loss of p53 licenses subsequent expansion of tumorigenic clones.
Cell Cycle | 2010
Melissa J. Peart; Masha V. Poyurovsky; Elizabeth M. Kass; Marshall Urist; Emmy W. Verschuren; Matthew K. Summers; Peter K. Jackson; Carol Prives
The mechanisms that control E2F-1 activity are complex. We previously showed that Chk1 and Chk2 are required for E2F1 stabilization and p73 target gene induction following DNA damage. To gain further insight into the processes regulating E2F1 protein stability, we focused our investigation on the mechanisms responsible for regulating E2F1 turnover. Here we show that E2F1 is a substrate of the anaphase promoting complex or cyclosome (APC/C), a ubiquitin ligase that plays an important role in cell cycle progression. Ectopic expression of the APC/C activators Cdh1 and Cdc20 reduced the levels of co-expressed E2F-1 protein. Co-expression of DP1 with E2F1 blocked APC/C-induced E2F1 degradation, suggesting that the E2F1/DP1 heterodimer is protected from APC/C regulation. Following Cdc20 knockdown, E2F1 levels increased and remained stable in extracts over a time course, indicating that APC/CCdc20 is a primary regulator of E2F1 stability in vivo. Moreover, cell synchronization experiments showed that siRNA directed against Cdc20 induced an accumulation of E2F1 protein in prometaphase cells. These data suggest that APC/CCdc20 specifically targets E2F1 for degradation in early mitosis and reveal a novel mechanism for limiting free E2F1 levels in cells, failure of which may compromise cell survival and/or homeostasis.
Cell Cycle | 2006
Norman L. Lehman; Emmy W. Verschuren; Jerry Y. Hsu; Athena M. Cherry; Peter K. Jackson
The anaphase promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that controls the cell cycle by directing the ubiquitin-dependent proteolysis of Sphase and mitosis promoting factors. Emi1 is an E2F transcriptional target that drives cell cycle progression from G1/S through early mitosis by inhibiting the APC/C’s ubiquitin ligase activity, and thus facilitates accumulation of APC/C substrates. Using cell culture model systems, we found that Emi1 overexpression leads to proliferation, tetraploidy and genome instability of cells deficient for p53. We propose that loss of pRb repression of E2F-mediated transcription causing misregulation of Emi1 and APC/C substrates results in the generation of tetraploidy and proliferation of genomically unstable cells in the absence of normal p53 function. This represents a potentially important mechanism by whichpRb and p53 dysfunction may contribute to tumorigenesis through the generation of genomic instability.
Scientific Reports | 2015
Emma Davies; Meng Dong; Matthias Gutekunst; Katja Närhi; Hanneke J. A. A. van Zoggel; Sami Blom; A. Nagaraj; Tauno Metsalu; Eva Oswald; Sigrun Erkens-Schulze; Juan A. Delgado San Martin; Riku Turkki; Stephen R. Wedge; Taija af Hällström; Julia Schueler; Wytske M. van Weerden; Emmy W. Verschuren; Simon T. Barry; Heiko van der Kuip; John A. Hickman
Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1α. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means.
Molecular and Cellular Biology | 2007
Emmy W. Verschuren; Kenneth H. Ban; Marilyn Masek; Norman L. Lehman; Peter K. Jackson
ABSTRACT Expression of the anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 is required for the accumulation of APC/C substrates crucial for DNA synthesis and mitotic entry. We show that in vivo Emi1 expression correlates with the proliferative status of the cellular compartment and that cells lacking Emi1 undergo cellular senescence. Emi1 depletion leads to strong decreases in E2F target mRNA and APC/C substrate protein abundances. However, cyclin E mRNA and cyclin E protein levels and associated kinase activities are increased. Cells lacking Emi1 undergo DNA damage, likely explained by replication stress upon deregulated cyclin E- and A-associated kinase activities. Inhibition of ATM kinase prevents induction of senescence, implying that senescence is a consequence of DNA damage. Surprisingly, no senescence or no extensive amount of senescence is evident upon depletion of the Emi1-stabilizing factor Evi5 or Pin1, respectively. Our data suggest that maintenance of a protein stabilization/mRNA expression positive-feedback circuit fueled by Emi1 is required for accurate cell cycle progression, maintenance of DNA integrity, and prevention of cellular senescence.
Cell Death and Disease | 2013
Laura Kakkola; Oxana V. Denisova; Janne Tynell; Johanna Viiliäinen; Tine Ysenbaert; R. C. Matos; A. Nagaraj; Tiina Öhman; Henrik Paavilainen; Lin Feng; Bhagwan Yadav; Ilkka Julkunen; Olli Vapalahti; Veijo Hukkanen; Jakob Stenman; Tero Aittokallio; Emmy W. Verschuren; Päivi M. Ojala; Tuula A. Nyman; Xavier Saelens; K. Dzeyk; Denis E. Kainov
ABT-263 and its structural analogues ABT-199 and ABT-737 inhibit B-cell lymphoma 2 (Bcl-2), BCL2L1 long isoform (Bcl-xL) and BCL2L2 (Bcl-w) proteins and promote cancer cell death. Here, we show that at non-cytotoxic concentrations, these small molecules accelerate the deaths of non-cancerous cells infected with influenza A virus (IAV) or other viruses. In particular, we demonstrate that ABT-263 altered Bcl-xL interactions with Bcl-2 antagonist of cell death (Bad), Bcl-2-associated X protein (Bax), uveal autoantigen with coiled-coil domains and ankyrin repeats protein (UACA). ABT-263 thereby activated the caspase-9-mediated mitochondria-initiated apoptosis pathway, which, together with the IAV-initiated caspase-8-mediated apoptosis pathway, triggered the deaths of IAV-infected cells. Our results also indicate that Bcl-xL, Bcl-2 and Bcl-w interact with pattern recognition receptors (PRRs) that sense virus constituents to regulate cellular apoptosis. Importantly, premature killing of IAV-infected cells by ABT-263 attenuated the production of key pro-inflammatory and antiviral cytokines. The imbalance in cytokine production was also observed in ABT-263-treated IAV-infected mice, which resulted in an inability of the immune system to clear the virus and eventually lowered the survival rates of infected animals. Thus, the results suggest that the chemical inhibition of Bcl-xL, Bcl-2 and Bcl-w could potentially be hazardous for cancer patients with viral infections.
Cell Cycle | 2013
Jenni Lahtela; Laura Corson; Annabrita Hemmes; Matthew J. Brauer; Sonja Koopal; James Lee; Thomas Hunsaker; Peter K. Jackson; Emmy W. Verschuren
Activation of a cellular senescence program is a common response to prolonged oncogene activation or tumor suppressor loss, providing a physiological mechanism for tumor suppression in premalignant cells. The link between senescence and tumor suppression supports the hypothesis that a loss-of-function screen measuring bona fide senescence marker activation should identify candidate tumor suppressors. Using a high-content siRNA screening assay for cell morphology and proliferation measures, we identify 12 senescence-regulating kinases and determine their senescence marker signatures, including elevation of senescence-associated β-galactosidase, DNA damage and p53 or p16INK4a expression. Consistent with our hypothesis, SNP array CGH data supports loss of gene copy number of five senescence-suppressing genes across multiple tumor samples. One such candidate is the EPHA3 receptor tyrosine kinase, a gene commonly mutated in human cancer. We demonstrate that selected intracellular EPHA3 tumor-associated point mutations decrease receptor expression level and/or receptor tyrosine kinase (RTK) activity. Our study therefore describes a new strategy to mine for novel candidate tumor suppressors and provides compelling evidence that EPHA3 mutations may promote tumorigenesis only when key senescence-inducing pathways have been inactivated.