Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enam Chowdhury is active.

Publication


Featured researches published by Enam Chowdhury.


IEEE Transactions on Electron Devices | 2000

Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon

J. Kolodzey; Enam Chowdhury; T. N. Adam; Guohua Qui; I. Rau; J. O. Olowolafe; John S. Suehle; Yuan Chen

Leakage currents and dielectric breakdown were studied in MIS capacitors of metal-aluminum oxide-silicon. The aluminum oxide was produced by thermally oxidizing AlN at 800-1160/spl deg/C under dry O/sub 2/ conditions. The AlN films were deposited by RF magnetron sputtering on p-type Si (100) substrates. Thermal oxidation produced Al/sub 2/O/sub 3/ with a thickness and structure that depended on the process time and temperature. The MIS capacitors exhibited the charge regimes of accumulation, depletion, and inversion on the Si semiconductor surface. The best electrical properties were obtained when all of the AlN was fully oxidized to Al/sub 2/O/sub 3/ with no residual AlN. The MIS flatband voltage was near 0 V, the net oxide trapped charge density, Q/sub 0x/, was less than 10/sup 11/ cm/sup -2/, and the interface trap density, D/sub it/, was less than 10/sup 11/ cm/sup -2/ eV/sup -1/, At an oxide electric field of 0.3 MV/cm, the leakage current density was less than 10/sup -7/ A cm/sup -2/, with a resistivity greater than 10/sup 12/ /spl Omega/-cm. The critical field for dielectric breakdown ranged from 4 to 5 MV/cm. The temperature dependence of the current versus electric field indicated that the conduction mechanism was Frenkel-Poole emission, which has the property that higher temperatures reduce the current. This may be important for the reliability of circuits operating under extreme conditions. The dielectric constant ranged from 3 to 9. The excellent electronic quality of aluminum oxide may be attractive for field effect transistor applications.


Physics of Plasmas | 2008

Fast electron generation in cones with ultraintense laser pulses

L. Van Woerkom; K. U. Akli; T. Bartal; F. N. Beg; S. Chawla; C. D. Chen; Enam Chowdhury; R. R. Freeman; D. Hey; M.H. Key; J. King; Anthony Link; T. Ma; Andrew J. Mackinnon; A. G. MacPhee; Dustin Offermann; V. Ovchinnikov; P. K. Patel; Douglass Schumacher; R. Stephens; Y.Y. Tsui

Experimental results from copper cones irradiated with ultra-intense laser light are presented. Spatial images and total yields of Cu K{sub {alpha}} fluorescence were measured as a function of the laser focusing properties. The fluorescence emission extends into the cone approximately 300 {micro}m from the cone tip and cannot be explained by ray tracing including cone wall absorption. In addition the total fluorescence yield from cones is an order of magnitude higher than for equivalent mass foil targets. Indications are that the physics of the laser cone interaction is dominated by preplasma created from the long duration, low energy pre-pulse from the laser.


Applied Physics Letters | 1997

The effects of oxidation temperature on the capacitance–voltage characteristics of oxidized AlN films on Si

J. Kolodzey; Enam Chowdhury; G. Qui; J. O. Olowolafe; C. P. Swann; Karl Unruh; John S. Suehle; R. G. Wilson; J. M. Zavada

The thermal oxidation of AlN thin films produces a high quality insulator which exhibits the gate voltage-controlled charge regimes of accumulation, depletion, and inversion on Si surfaces. The temperature dependence of oxidation is important for device processing. We report on the composition, structure, and electrical properties of the AlN versus the oxidization temperature. AlN layers 500 nm thick were deposited by rf sputtering on p-type Si (100) substrates, followed by oxidation in a furnace at temperatures from 800 to 1100 °C with O2 flow. An oxidation time of 1 h produced layers of Al2O3 with small amounts of N having a thickness of 33 nm at 800 °C, and 524 nm at 1000 °C. Electrical measurements of metal-oxide-semiconductor capacitors indicated that the dielectric constant of the oxidized AlN was near 12. The best layer had a flatband voltage near zero with a net oxide trapped charge density less than 1011 cm−2. These results show that oxidized AlN has device-grade characteristics for the gate regi...


Applied Physics Letters | 1997

THERMALLY OXIDIZED ALN THIN FILMS FOR DEVICE INSULATORS

Enam Chowdhury; J. Kolodzey; J. O. Olowolafe; G. Qiu; G. Katulka; D. Hits; Michael W. Dashiell; D.W. van der Weide; C. P. Swann; Karl Unruh

The structural, optical, and electronic properties of an insulating material prepared by the thermal oxidation of AlN thin films on Si have been studied by a number of different experimental techniques. The thermal oxidation at 1100 °C of reactively sputtered AlN films on Si wafers was found to result in the formation of an oxide with a relative Al to O concentration near Al2O3 with small amounts of incorporated N. The structure of the AlO:N oxide could be varied between amorphous and polycrystalline, depending on the preparation conditions, and the oxide surface was found to be approximately three time smoother than the as-sputtered AlN films. Metal–oxide–silicon capacitors had an oxide charge density of about 1011 cm−2, capacitance–voltage characteristics similar to pure SiO2, and a dielectric constant of 12.4. Infrared measurements yielded a refractive index of 3.9. These results indicate that thermally oxidized AlN films show promise as insulating structures for many integrated circuit applications, p...


Optics Express | 2013

Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems

Patrick Poole; Simeon Trendafilov; Gennady Shvets; Douglas Smith; Enam Chowdhury

Laser-induced femtosecond damage thresholds of Au and Ag coated pulse compression gratings were measured using 800 nm laser pulses ranging in duration from 30 to 200 fs. These gratings differ from conventional metal-on-photoresist pulse compression gratings in that the gratings patterns are generated by etching the fused silica substrate directly. After etching, the metal overcoating was optimized based on diffraction efficiency and damage threshold considerations. The experiment on these gratings was performed under vacuum for single-shot damage. Single-shot damage threshold, where there is a 0% probability of damage, was determined to be within a 400-800 mJ/cm(2) range. The damage threshold exhibited no clear dependence on pulse width, but showed clear dependence on gold overcoat surface morphology. This was confirmed by electromagnetic field modeling using the finite element method, which showed that non-conformal coating morphology gives rise to significant local field enhancement near groove edges, lowering the diffraction efficiency and increasing Joule heating. Large-scale gratings with conformal coating have been installed successfully in the 500 TW Scarlet laser system.


Physical Review Letters | 2016

Microengineering Laser Plasma Interactions at Relativistic Intensities

Sheng Jiang; Liangliang Ji; K. M. George; Joseph Snyder; A. Krygier; Patrick Poole; C. Willis; R. L. Daskalova; Enam Chowdhury; Nathan S. Lewis; Douglass Schumacher; A. Pukhov; R. R. Freeman; K. U. Akli

We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.


Physics of Plasmas | 2014

Liquid crystal films as on-demand, variable thickness (50–5000 nm) targets for intense lasers

Patrick Poole; C. D. Andereck; Douglass Schumacher; R. L. Daskalova; Scott Feister; K. M. George; C. Willis; K. U. Akli; Enam Chowdhury

We have developed a new type of target for intense laser-matter experiments that offers significant advantages over those currently in use. The targets consist of a liquid crystal film freely suspended within a metal frame. They can be formed rapidly on-demand with thicknesses ranging from nanometers to micrometers, where the particular value is determined by the liquid crystal temperature and initial volume as well as by the frame geometry. The liquid crystal used for this work, 8CB (4′-octyl-4-cyanobiphenyl), has a vapor pressure below 10−6 Torr, so films made at atmospheric pressure maintain their initial thickness after pumping to high vacuum. Additionally, the volume per film is such that each target costs significantly less than one cent to produce. The mechanism of film formation and relevant physics of liquid crystals are described, as well as ion acceleration data from the first shots on liquid crystal film targets at the Ohio State University Scarlet laser facility.


Optics Express | 2015

Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove.

Kyle Kafka; Drake R. Austin; Hui Li; Allen Y. Yi; Jian Cheng; Enam Chowdhury

Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse (probe) from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form asynchronously, with the first one forming after 50 ps and others forming sequentially outward from the groove edge at larger time delays. A 1-D analytical model of electron heating including both the laser pulse and surface plasmon polariton excitation at the groove edge predicts ripple period, melt spot diameter, and qualitatively explains the asynchronous time-evolution of LIPSS formation.


Physics of Plasmas | 2012

Selective deuteron production using target normal sheath acceleration

John T. Morrison; M. Storm; Enam Chowdhury; K. U. Akli; S. Feldman; C. Willis; R. L. Daskalova; Tyler A. Growden; Paul R. Berger; T. Ditmire; L. Van Woerkom; R. R. Freeman

We report on the first successful demonstration of selective deuteron acceleration by the target normal sheath acceleration mechanism in which the normally overwhelming proton and carbon ion contaminant signals are suppressed by orders of magnitude relative to the deuteron signal. The deuterium ions originated from a layer of heavy ice that was deposited on to the rear surface of a 500 nm thick membrane of Si3N4 and Al. Our data show that the measured spectrum of ions produced by heavy ice targets is comprised of ∼99% deuterium ions. With a laser pulse of approximately 0.5 J, 120 fs duration, and ∼5×1018Wcm-2 mean intensity, the maximum recorded deuterium ion energy and yield normal to the target rear surface were 3.5 MeV and 1.2×1012sr−1, respectively.


Optics Express | 2015

Laser induced periodic surface structure formation in germanium by strong field mid IR laser solid interaction at oblique incidence.

Drake R. Austin; Kyle Kafka; Simeon Trendafilov; Gennady Shvets; Hui Li; Allen Y. Yi; Urszula B. Szafruga; Zhou Wang; Yu Hang Lai; Louis F. DiMauro; Enam Chowdhury

Laser induced periodic surface structures (LIPSS or ripples) were generated on single crystal germanium after irradiation with multiple 3 µm femtosecond laser pulses at a 45° angle of incidence. High and low spatial frequency LIPSS (HSFL and LSFL, respectively) were observed for both s- and p-polarized light. The measured LSFL period for p-polarized light was consistent with the currently established LIPSS origination model of coupling between surface plasmon polaritons (SPP) and the incident laser pulses. A vector model of SPP coupling is introduced to explain the formation of s-polarized LSFL away from the center of the damage spot. Additionally, a new method is proposed to determine the SPP propagation length from the decay in ripple depth. This is used along with the measured LSFL period to estimate the average electron density and Drude collision time of the laser-excited surface. Finally, full-wave electromagnetic simulations are used to corroborate these results while simultaneously offering insight into the nature of LSFL formation.

Collaboration


Dive into the Enam Chowdhury's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. M. Roquemore

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge