Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. R. Freeman is active.

Publication


Featured researches published by R. R. Freeman.


Physics of Plasmas | 2005

Review of progress in Fast Ignition

Max Tabak; Daniel Clark; S. P. Hatchett; M.H. Key; Barbara F. Lasinski; Richard Adolph Snavely; S. C. Wilks; R. P. J. Town; R. Stephens; E. M. Campbell; R. Kodama; Kunioki Mima; K. A. Tanaka; S. Atzeni; R. R. Freeman

Marshall Rosenbluth’s extensive contributions included seminal analysis of the physics of the laser-plasma interaction and review and advocacy of the inertial fusion program. Over the last decade he avidly followed the efforts of many scientists around the world who have studied Fast Ignition, an alternate form of inertial fusion. In this scheme, the fuel is first compressed by a conventional inertial confinement fusion driver and then ignited by a short (∼10ps) pulse, high-power laser. Due to technological advances, such short-pulse lasers can focus power equivalent to that produced by the hydrodynamic stagnation of conventional inertial fusion capsules. This review will discuss the ignition requirements and gain curves starting from simple models and then describe how these are modified, as more detailed physics understanding is included. The critical design issues revolve around two questions: How can the compressed fuel be efficiently assembled? And how can power from the driver be delivered efficient...


Review of Scientific Instruments | 2004

Proton radiography as an electromagnetic field and density perturbation diagnostic (invited)

A. J. Mackinnon; P. K. Patel; R. P. J. Town; M. J. Edwards; T. G. Phillips; S. C. Lerner; D. G. Hicks; M.H. Key; S. P. Hatchett; S. C. Wilks; M. Borghesi; L. Romagnani; S. Kar; T. Toncian; Georg Pretzler; O. Willi; M. Koenig; E. Martinolli; S. Lepape; A. Benuzzi-Mounaix; P. Audebert; J. C. Gauthier; J.A. King; R. Snavely; R. R. Freeman; T. Boehlly

Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.


Review of Scientific Instruments | 2003

4.5- and 8-keV emission and absorption x-ray imaging using spherically bent quartz 203 and 211 crystals (invited)

J. A. Koch; Y. Aglitskiy; C. M. Brown; Thomas E. Cowan; R. R. Freeman; Stephen P. Hatchett; Glenn E. Holland; M.H. Key; A. J. Mackinnon; John F. Seely; R. Snavely; R. Stephens

We have used spherically-bent quartz 203 and 211 crystals to image 4.5- and 8-keV sources in both emission and absorption geometries. These imaging systems are straightforward to align, provide high throughput, and can provide high spatial resolution over large fields of view. We discuss the imaging geometry and alignment strategies, and we present experimental results we have obtained from a 1-ns-duration, multikilojoule laser facility and from sub-ps-duration, ultrahigh-intensity laser facilities. Our successful applications suggest that high-quality, spherically-bent quartz crystals may be used to image at many different x-ray energies due to the numerous diffraction planes available from quartz. This range of usable x-ray energies increases the number of applications that might benefit from high-resolution, high-brightness, monochromatic x-ray imaging using bent crystals.


Physics of Plasmas | 2006

Hot Surface Ionic Line Emission and Cold K-Inner Shell Emission from Petawatt-Laser-Irradiated Cu Foil Targets

W. Theobald; K. U. Akli; R. J. Clarke; J. A. Delettrez; R. R. Freeman; S. H. Glenzer; J. S. Green; G. Gregori; R. Heathcote; N. Izumi; J. King; J. A. Koch; Jaroslav Kuba; K. L. Lancaster; A. J. Mackinnon; M.H. Key; C. Mileham; J. F. Myatt; D. Neely; P.A. Norreys; H.-S. Park; J. Pasley; P. K. Patel; S. P. Regan; H. Sawada; R. Shepherd; Richard Adolph Snavely; R. Stephens; C. Stoeckl; M. Storm

A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.


Physics of Plasmas | 2009

Bremsstrahlung and Kα fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons

C. D. Chen; P. K. Patel; D. Hey; A. J. Mackinnon; M.H. Key; K. U. Akli; T. Bartal; F. N. Beg; S. Chawla; H. Chen; R. R. Freeman; D.P. Higginson; Anthony Link; T. Ma; A. G. MacPhee; R.B. Stephens; L. Van Woerkom; B. Westover; Miklos Porkolab

The Bremsstrahlung and K-shell emission from 1×1×1 mm3 planar targets irradiated by a short-pulse 3×1018–8×1019 W/cm2 laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device. From Monte Carlo modeling of the target emission, conversion efficiencies into 1–3 MeV electrons of 3%–12%, representing 20%–40% total conversion efficiencies, were inferred for intensities up to 8×1019 W/cm2. Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1–3 MeV electrons.


Review of Scientific Instruments | 2008

Use of GafChromic film to diagnose laser generated proton beams

D. Hey; M.H. Key; A. J. Mackinnon; A. G. MacPhee; P. K. Patel; R. R. Freeman; L. Van Woerkom; C. M. Castaneda

A calibration of three types of GafChromic radiochromic film (HS, MD-55, and HD-810) was carried out on the Crocker Nuclear Laboratorys 76 in. cyclotron at UC Davis over doses ranging from 0.001 to 15 kGy. The film was digitized with a scanning microdensitometer with which it was scanned twice with two different filters to increase the films effective dynamic range. We demonstrate how this calibrated film can be used to measure the spectrum and total energy of a laser generated proton beam. This technique was applied to an experiment on the 10 J, 100 fs Callisto laser at Lawrence Livermore National Laboratory. The resulting proton spectrum was compared to that obtained by simultaneous measurement of Ti nuclear activation; the two methods give the same proton beam slope temperature and agree in number of protons to within 27%.


Physics of Plasmas | 2007

Temperature sensitivity of Cu Kα imaging efficiency using a spherical Bragg reflecting crystal

K. U. Akli; M.H. Key; H.-K. Chung; Stephanie B. Hansen; R. R. Freeman; M. H. Chen; G. Gregori; S. P. Hatchett; D. Hey; N. Izumi; J. King; Jaroslav Kuba; P. A. Norreys; A. J. Mackinnon; C. D. Murphy; Richard Adolph Snavely; R.B. Stephens; C. Stoeckel; W. Theobald; B. Zhang

The interaction of a 75J 10ps, high intensity laser beam with low-mass, solid Cu targets is investigated. Two instruments were fielded as diagnostics of Cu K-shell emission from the targets: a single photon counting spectrometer provided the absolute Kα yield [C. Stoeckl et al., Rev. Sci. Instrum. 75, 3705 (2004)] and a spherically bent Bragg crystal recorded 2D monochromatic images with a spatial resolution of 10μm [J. A. Koch et al., Rev. Sci. Instrum. 74, 2130 (2003)]. Due to the shifting and broadening of the Kα spectral lines with increasing temperature, there is a temperature dependence of the crystal collection efficiency. This affects measurements of the spatial pattern of electron transport, and it provides a temperature diagnostic when cross calibrated against the single photon counting spectrometer. The experimental data showing changing collection efficiency are presented. The results are discussed in light of modeling of the temperature-dependent spectrum of Cu K-shell emission.


Review of Scientific Instruments | 2008

A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters.

C. D. Chen; J. A. King; M.H. Key; K. U. Akli; F. N. Beg; H. Chen; R. R. Freeman; Anthony Link; A. J. Mackinnon; A. G. MacPhee; P. K. Patel; M. Porkolab; R. Stephens; L. Van Woerkom

A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with image plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code INTEGRATED TIGER SERIES 3.0 and the dosimeters calibrated with radioactive sources. An electron distribution with a slope temperature of 1.3 MeV is inferred from the Bremsstrahlung spectra.


Physics of Plasmas | 2004

Characterization of 7Li(p, n) 7Be neutron yields from laser produced ion beams for fast neutron radiography

K. L. Lancaster; Stefan Karsch; H. Habara; F. N. Beg; E.L. Clark; R. R. Freeman; M.H. Key; J.A. King; R. Kodama; K. Krushelnick; K.W.D. Ledingham; P. McKenna; C. D. Murphy; P. A. Norreys; R. Stephens; C. Stoeckl; Y. Toyama; M.S. Wei; Matthew Zepf

Investigations of 7Li(p,n)7Be reactions using Cu and CH primary and LiF secondary targets were performed using the VULCAN laser [C.N. Danson et al., J. Mod. Opt. 45, 1653 (1997)] with intensities up to 3×1019 W cm−2. The neutron yield was measured using CR-39 plastic track detector and the yield was up to 3×108 sr−1 for CH primary targets and up to 2×108 sr−1 for Cu primary targets. The angular distribution of neutrons was measured at various angles and revealed a relatively anisotropic neutron distribution over 180° that was greater than the error of measurement. It may be possible to exploit such reactions on high repetition, table-top lasers for neutron radiography.


Physics of Plasmas | 2007

Laser generated proton beam focusing and high temperature isochoric heating of solid matter

Richard Adolph Snavely; B. Zhang; K. Akli; Z. L. Chen; R. R. Freeman; P. Gu; S. P. Hatchett; D. Hey; Jeremy Hill; M.H. Key; Y. Izawa; J.A. King; Y. Kitagawa; R. Kodama; A. B. Langdon; Barbara F. Lasinski; Anle Lei; A. J. Mackinnon; P. K. Patel; R. Stephens; M. Tampo; K. A. Tanaka; R. P. J. Town; Y. Toyama; T. Tsutsumi; S. C. Wilks; T. Yabuuchi; Jian Zheng

The results of laser-driven proton beam focusing and heating with a high energy (170J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1μm light at intensities of ∼3×1018W∕cm2 and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100μm thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94× the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81eV in 15μm thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.

Collaboration


Dive into the R. R. Freeman's collaboration.

Top Co-Authors

Avatar

M.H. Key

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. N. Beg

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. K. Patel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. J. Mackinnon

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Hey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Ma

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge