Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Encouse B. Golden is active.

Publication


Featured researches published by Encouse B. Golden.


Science | 2015

Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.

Marie Vétizou; Jonathan M. Pitt; Romain Daillère; Patricia Lepage; Nadine Waldschmitt; Caroline Flament; Sylvie Rusakiewicz; Bertrand Routy; María Paula Roberti; Connie P M Duong; Vichnou Poirier-Colame; Antoine Roux; Sonia Becharef; Silvia C. Formenti; Encouse B. Golden; Sascha Cording; Gérard Eberl; Andreas Schlitzer; Florent Ginhoux; Sridhar Mani; Takahiro Yamazaki; Nicolas Jacquelot; David P. Enot; Marion Bérard; Jérôme Nigou; Paule Opolon; Alexander Eggermont; Paul Louis Woerther; Elisabeth Chachaty; Nathalie Chaput

Gut microbes affect immunotherapy The unleashing of antitumor T cell responses has ushered in a new era of cancer treatment. Although these therapies can cause dramatic tumor regressions in some patients, many patients inexplicably see no benefit. Mice have been used in two studies to investigate what might be happening. Specific members of the gut microbiota influence the efficacy of this type of immunotherapy (see the Perspective by Snyder et al.). Vétizou et al. found that optimal responses to anticytotoxic T lymphocyte antigen blockade required specific Bacteroides spp. Similarly, Sivan et al. discovered that Bifidobacterium spp. enhanced the efficacy of antiprogrammed cell death ligand 1 therapy. Science, this issue, p. 1079 and p. 1084; see also p. 1031 Gut microbes modulate the effectiveness of cancer immunotherapies in mice. Antibodies targeting CTLA-4 have been successfully used as cancer immunotherapy. We find that the antitumor effects of CTLA-4 blockade depend on distinct Bacteroides species. In mice and patients, T cell responses specific for B. thetaiotaomicron or B. fragilis were associated with the efficacy of CTLA-4 blockade. Tumors in antibiotic-treated or germ-free mice did not respond to CTLA blockade. This defect was overcome by gavage with B. fragilis, by immunization with B. fragilis polysaccharides, or by adoptive transfer of B. fragilis–specific T cells. Fecal microbial transplantation from humans to mice confirmed that treatment of melanoma patients with antibodies against CTLA-4 favored the outgrowth of B. fragilis with anticancer properties. This study reveals a key role for Bacteroidales in the immunostimulatory effects of CTLA-4 blockade.


Cancer immunology research | 2013

An Abscopal Response to Radiation and Ipilimumab in a Patient with Metastatic Non-Small Cell Lung Cancer

Encouse B. Golden; Sandra Demaria; Peter B. Schiff; Abraham Chachoua; Silvia C. Formenti

The combination of local radiotherapy to a liver metastasis and systemic anti-CTLA-4 antibody resulted in a sustained complete clinical and radiologic remission in a patient with chemotherapy-refractory metastatic non–small cell lung cancer. A posteriori evidence suggests that radiotherapy to a targeted tumor can elicit an immune-mediated abscopal (ab-scopus, away from the target) effect in nontargeted tumors, when combined with an anti-CTL antigen-4 (CTLA-4) monoclonal antibody. Concurrent radiotherapy and CTLA-4 blockade induced immune-mediated abscopal effects in poorly immunogenic preclinical tumor models and patients with metastatic melanoma. However, no such reports exist for patients with metastatic lung adenocarcinoma. We report the first abscopal response in a treatment-refractory lung cancer patient treated with radiotherapy and ipilimumab (a human anti-CTLA-4 monoclonal antibody). A posttreatment increase in tumor-infiltrating cytotoxic lymphocytes, tumor regression, and normalization of tumor markers was observed. One year after treatment with concurrent radiotherapy and ipilimumab, the patient is without evidence of disease. Cancer Immunol Res; 1(6); 365–72. ©2013 AACR.


Lancet Oncology | 2015

Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial

Encouse B. Golden; Arpit Chhabra; Abraham Chachoua; Sylvia Adams; Martin Donach; M. Fenton-Kerimian; Kent Friedman; Fabio Ponzo; James S. Babb; Judith D. Goldberg; Sandra Demaria; Silvia C. Formenti

BACKGROUND An abscopal response describes radiotherapy-induced immune-mediated tumour regression at sites distant to the irradiated field. Granulocyte-macrophage colony-stimulating factor is a potent stimulator of dendritic cell maturation. We postulated that the exploitation of the pro-immunogenic effects of radiotherapy with granulocyte-macrophage colony-stimulating factor might result in abscopal responses among patients with metastatic cancer. METHODS Patients with stable or progressing metastatic solid tumours, on single-agent chemotherapy or hormonal therapy, with at least three distinct measurable sites of disease, were treated with concurrent radiotherapy (35 Gy in ten fractions, over 2 weeks) to one metastatic site and granulocyte-macrophage colony-stimulating factor (125 μg/m(2) subcutaneously injected daily for 2 weeks, starting during the second week of radiotherapy). This course was repeated, targeting a second metastatic site. A Simons optimal two-stage design was chosen for this trial: an additional 19 patients could be enrolled in stage 2 only if at least one patient among the first ten had an abscopal response. If no abscopal responses were seen among the first ten patients, the study would be deemed futile and terminated. The primary endpoint was the proportion of patients with an abscopal response (defined as at least a 30% decrease in the longest diameter of the best responding abscopal lesion). Secondary endpoints were safety and survival. Analyses were done based on intention to treat. The trial has concluded accrual, and is registered with ClinicalTrials.gov, number NCT02474186. FINDINGS From April 7, 2003, to April 3, 2012, 41 patients with metastatic cancer were enrolled. In stage 1 of the Simons two-stage design, ten patients were enrolled: four of the first ten patients had abscopal responses. Thus, the trial proceeded to stage 2, as planned, and an additional 19 patients were enrolled. Due to protocol amendments 12 further patients were enrolled. Abscopal responses occurred in eight (27·6%, 95% CI 12·7-47·2) of the first 29 patients, and 11 (26·8%, 95% CI 14·2-42·9) of 41 accrued patients (specifically in four patients with non-small-cell lung cancer, five with breast cancer, and two with thymic cancer). The most common grade 3-4 adverse events were fatigue (six patients) and haematological (ten patients). Additionally, a serious adverse event of grade 4 pulmonary embolism occurred in one patient. INTERPRETATION The combination of radiotherapy with granulocyte-macrophage colony-stimulating factor produced objective abscopal responses in some patients with metastatic solid tumours. This finding represents a promising approach to establish an in-situ anti-tumour vaccine. Further research is warranted in this area. FUNDING New York University School of Medicines Department of Radiation Oncology and Cancer Institute.


JAMA Oncology | 2015

Role of Local Radiation Therapy in Cancer Immunotherapy

Sandra Demaria; Encouse B. Golden; Silvia C. Formenti

The recent success of cancer immunotherapy has demonstrated the power of the immune system to clear tumors, generating renewed enthusiasm for identifying ways to induce antitumor immune responses in patients. Natural antitumor immune responses are detectable in a fraction of patients across multiple malignant neoplasms and can be reactivated by targeting rate-limiting immunosuppressive mechanisms. In most patients, however, interventions to induce a de novo antitumor immune response are necessary. We review growing evidence that radiation therapy targeted to the tumor can convert it into an in situ tumor vaccine by inducing release of antigens during cancer cell death in association with proinflammatory signals that trigger the innate immune system to activate tumor-specific T cells. In addition, radiations effects on the tumor microenvironment enhance infiltration of activated T cells and can overcome some of the barriers to tumor rejection. Thus, the complementary effects of radiation on priming and effector phases of antitumor immunity make it an appealing strategy to generate immunity against a patients own individual tumor, that through immunological memory, can result in long-lasting systemic responses. Several anecdotal cases have demonstrated the efficacy of combining radiation with available immunotherapies, and results of prospective trials are forthcoming.


OncoImmunology | 2014

Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death

Encouse B. Golden; Derek Frances; Ilenia Pellicciotta; Sandra Demaria; Mary Helen Barcellos-Hoff; Silvia C. Formenti

Established tumors are typified by an immunosuppresive microenvironment. Countering this naturally occurring phenomenon, emerging evidence suggests that radiation promotes a proimmunogenic milieu within the tumor capable of stimulating host cancer-specific immune responses. Three cryptic immunogenic components of cytotoxic-agent induced cell death—namely, calreticulin cell surface exposure, the release of high mobility group box 1 (HMGB1) protein, and the liberation of ATP—have been previously shown to be critical for dendritic cell (DC) activation and effector T-cell priming. Thus, these immune-mobilizing components commonly presage tumor rejection in response to treatment. We initially set out to address the hypothesis that radiation-induced immunogenic cell death (ICD) is dose-dependent. Next, we hypothesized that radiation would enhance chemotherapy-induced ICD when given concomitantly, as suggested by the favorable clinical outcomes observed in response to analogous concurrent chemoradiation regimens. Thus, we designed an in vitro assay to examine the 3 hallmark features of ICD at clinically relevant doses of radiation. We then tested the immunogenic-death inducing effects of radiation combined with carboplatin or paclitaxel, focusing on these combinations to mimic chemoradiation regimens actually used in clinical trials of early stage triple negative [NCT0128953/NYU-10–01969] and locally advanced [NYU-06209] breast cancer patients, respectively. Despite the obvious limitations of an in vitro model, radiotherapy produced both a dose-dependent induction and chemotherapeutic enhancement of ICD. These findings provide preliminary evidence that ICD stimulated by either high-dose radiotherapy alone, or concurrent chemoradiation regimens, may contribute to the establishment of a peritumoral proimmunogenic milieu.


Cancer Research | 2008

Aggravated Endoplasmic Reticulum Stress as a Basis for Enhanced Glioblastoma Cell Killing by Bortezomib in Combination with Celecoxib or Its Non-Coxib Analogue, 2,5-Dimethyl-Celecoxib

Adel Kardosh; Encouse B. Golden; Peter Pyrko; Jasim Uddin; Florence M. Hofman; Thomas C. Chen; Stan G. Louie; Nicos A. Petasis; Axel H. Schönthal

The proteasome inhibitor bortezomib (Velcade) is known to trigger endoplasmic reticulum (ER) stress via the accumulation of obsolete and damaged proteins. The selective cyclooxygenase-2 (COX-2) inhibitor celecoxib (Celebrex) causes ER stress through a different mechanism (i.e., by causing leakage of calcium from the ER into the cytosol). Each of these two mechanisms has been implicated in the anticancer effects of the respective drug. We therefore investigated whether the combination of these two drugs would lead to further increased ER stress and would enhance their antitumor efficacy. With the use of human glioblastoma cell lines, we show that this is indeed the case. When combined, bortezomib and celecoxib triggered elevated expression of the ER stress markers GRP78/BiP and CHOP/GADD153, caused activation of c-Jun NH(2)-terminal kinase and ER stress-associated caspase-4, and greatly increased apoptotic cell death. Small interfering RNA-mediated knockdown of the protective ER chaperone GRP78/BiP further sensitized the tumor cells to killing by the drug combination. The contribution of celecoxib was independent of the inhibition of COX-2 because a non-coxib analogue of this drug, 2,5-dimethyl-celecoxib (DMC), faithfully and more potently mimicked these combination effects in vitro and in vivo. Taken together, our results show that combining bortezomib with celecoxib or DMC very potently triggers the ER stress response and results in greatly increased glioblastoma cytotoxicity. We propose that this novel drug combination should receive further evaluation as a potentially effective anticancer therapy.


Frontiers in Oncology | 2012

The convergence of radiation and immunogenic cell death signaling pathways

Encouse B. Golden; Ilenia Pellicciotta; Sandra Demaria; Mary Helen Barcellos-Hoff; Silvia C. Formenti

Ionizing radiation (IR) triggers programmed cell death in tumor cells through a variety of highly regulated processes. Radiation-induced tumor cell death has been studied extensively in vitro and is widely attributed to multiple distinct mechanisms, including apoptosis, necrosis, mitotic catastrophe (MC), autophagy, and senescence, which may occur concurrently. When considering tumor cell death in the context of an organism, an emerging body of evidence suggests there is a reciprocal relationship in which radiation stimulates the immune system, which in turn contributes to tumor cell kill. As a result, traditional measurements of radiation-induced tumor cell death, in vitro, fail to represent the extent of clinically observed responses, including reductions in loco-regional failure rates and improvements in metastases free and overall survival. Hence, understanding the immunological responses to the type of radiation-induced cell death is critical. In this review, the mechanisms of radiation-induced tumor cell death are described, with particular focus on immunogenic cell death (ICD). Strategies combining radiotherapy with specific chemotherapies or immunotherapies capable of inducing a repertoire of cancer specific immunogens might potentiate tumor control not only by enhancing cell kill but also through the induction of a successful anti-tumor vaccination that improves patient survival.


Cancer Letters | 2011

Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models

Thomas C. Chen; Weijun Wang; Encouse B. Golden; Simmy Thomas; Walavan Sivakumar; Florence M. Hofman; Stan G. Louie; Axel H. Schönthal

The alkylating agent temozolomide, in combination with surgery and radiation, is the current standard of care for patients with glioblastoma. However, despite this extensive therapeutic effort, the inclusion of temozolomide extends survival only by a few short months. Among the factors contributing to chemoresistance is elevated expression of the endoplasmic reticulum (ER) chaperone GRP78 (glucose-regulated protein 78; BiP), a key pro-survival component of the ER stress response system. Because the green tea component EGCG (epigallocatechin 3-gallate) had been shown to inhibit GRP78 function, we investigated whether this polyphenolic agent would be able to increase the therapeutic efficacy of temozolomide in preclinical models of glioblastoma. Mice with intracranially implanted human U87 (p53 wild type) or U251 (p53 mutant) glioblastoma cells were treated with temozolomide and EGCG, alone and in combination. We found that EGCG alone did not provide survival benefit, but significantly improved the existing therapeutic effect of temozolomide, i.e., life extension was substantially greater under combination therapy as compared to temozolomide therapy alone. Immunohistochemical analysis of tumor tissue revealed increased expression levels of GRP78 in temozolomide-treated animals, which was diminished when temozolomide was combined with EGCG. Parallel in vitro experiments with siRNA targeting GRP78 or its major pro-apoptotic antagonist CHOP (CCAAT/enhancer binding protein homologous protein/GADD153) further established a critical role of the ER stress response system, where si-GRP78 sensitized cells to treatment with temozolomide, and si-CHOP provided protection from drug-induced toxicity. Thus, ER stress-regulatory components affect the chemotherapeutic response of glioblastoma cells to treatment with temozolomide, and inclusion of EGCG is able to increase the therapeutic efficacy of this DNA-damaging agent.


Seminars in Radiation Oncology | 2015

Radiotherapy and Immunogenic Cell Death

Encouse B. Golden; Lionel Apetoh

Advances in understanding the mechanisms that underlie the interplay between radiation-invoked immune responses and tumor regression are underway. Emerging applications of local radiotherapy as an immunologic adjuvant have provided radiation oncologists with a method for converting malignant cells into endogenous anticancer vaccines. The dispersion of radiotherapy-induced immune-stimulating tumor antigens released from dying tumor cells into the surrounding milieu (known as immunogenic cell death, Fig. 1), is one such exploitable process that contributes to the propagation of antitumor immunity. Downstream components of the immune system may suppress, promote, or ambiguously affect antitumoral responses. Additionally, host, tumor, and treatment-related characteristics govern the significance of these signals, thereby dictating therapeutic outcomes. Herein, we review the process of radiotherapy-induced immunogenic cell death and its role in generating an in situ vaccine to help refine radioimmunotherapy-based protocols.


Cancer Letters | 2012

Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent.

Natasha Sharma; Simmy Thomas; Encouse B. Golden; Florence M. Hofman; Thomas C. Chen; Nicos A. Petasis; Axel H. Schönthal; Stan G. Louie

Autophagy has been recognized as a potential target for cancer therapy. The antimalarial drug chloroquine (CQ) is able to inhibit autophagy and therefore is being considered for cancer therapeutics. However, the relatively low potency of CQ prompted us to investigate whether other lysosomotropic agents might be more effective, and thus potentially more useful. We therefore compared the cytotoxic efficacy of CQ, the quinoline analog mefloquine (MQ), and the fluoroquinolones ciprofloxacin and levofloxacin in several human breast cancer cell lines. We found that MQ was the most potent compound tested; it inhibited autophagy, triggered endoplasmic reticulum stress, and caused cell death in T47D and MDA-MB-231. Altogether, our study demonstrates superior potency of MQ over CQ and the ability of MQ to produce anticancer effects in both hormone receptor positive and negative breast cancer cell lines, suggesting its usefulness in treating various types of cancer.

Collaboration


Dive into the Encouse B. Golden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Chen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Axel H. Schönthal

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Stan G. Louie

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florence M. Hofman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicos A. Petasis

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge