Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Mugnaini is active.

Publication


Featured researches published by Enrico Mugnaini.


Nature | 2011

Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia

Han Xiang Deng; Wenjie Chen; Seong-Tshool Hong; Kym M. Boycott; George H. Gorrie; Nailah Siddique; Yi Yang; Faisal Fecto; Yong-Yong Shi; Hong Zhai; Hujun Jiang; Makito Hirano; Evadnie Rampersaud; Gerard Jansen; Sandra Donkervoort; Eileen H. Bigio; Benjamin Rix Brooks; Kaouther Ajroud; Robert Sufit; Jonathan L. Haines; Enrico Mugnaini; Margaret A. Pericak-Vance; Teepu Siddique

Amyotrophic lateral sclerosis (ALS) is a paralytic and usually fatal disorder caused by motor-neuron degeneration in the brain and spinal cord. Most cases of ALS are sporadic but about 5–10% are familial. Mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP, also known as TDP43) and fused in sarcoma (FUS, also known as translocated in liposarcoma (TLS)) account for approximately 30% of classic familial ALS. Mutations in several other genes have also been reported as rare causes of ALS or ALS-like syndromes. The causes of the remaining cases of familial ALS and of the vast majority of sporadic ALS are unknown. Despite extensive studies of previously identified ALS-causing genes, the pathogenic mechanism underlying motor-neuron degeneration in ALS remains largely obscure. Dementia, usually of the frontotemporal lobar type, may occur in some ALS cases. It is unclear whether ALS and dementia share common aetiology and pathogenesis in ALS/dementia. Here we show that mutations in UBQLN2, which encodes the ubiquitin-like protein ubiquilin 2, cause dominantly inherited, chromosome-X-linked ALS and ALS/dementia. We describe novel ubiquilin 2 pathology in the spinal cords of ALS cases and in the brains of ALS/dementia cases with or without UBQLN2 mutations. Ubiquilin 2 is a member of the ubiquilin family, which regulates the degradation of ubiquitinated proteins. Functional analysis showed that mutations in UBQLN2 lead to an impairment of protein degradation. Therefore, our findings link abnormalities in ubiquilin 2 to defects in the protein degradation pathway, abnormal protein aggregation and neurodegeneration, indicating a common pathogenic mechanism that can be exploited for therapeutic intervention.


Nature Neuroscience | 2006

Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models

Michelle Day; Zhongfeng Wang; Jun B. Ding; Xinhai An; C. A. Ingham; Andrew F Shering; David L. Wokosin; Ema Ilijic; Zhuoxin Sun; Allan R. Sampson; Enrico Mugnaini; Ariel Y. Deutch; Susan R. Sesack; Gordon W. Arbuthnott; D. James Surmeier

Parkinson disease is a common neurodegenerative disorder that leads to difficulty in effectively translating thought into action. Although it is known that dopaminergic neurons that innervate the striatum die in Parkinson disease, it is not clear how this loss leads to symptoms. Recent work has implicated striatopallidal medium spiny neurons (MSNs) in this process, but how and precisely why these neurons change is not clear. Using multiphoton imaging, we show that dopamine depletion leads to a rapid and profound loss of spines and glutamatergic synapses on striatopallidal MSNs but not on neighboring striatonigral MSNs. This loss of connectivity is triggered by a new mechanism—dysregulation of intraspine Cav1.3 L-type Ca2+ channels. The disconnection of striatopallidal neurons from motor command structures is likely to be a key step in the emergence of pathological activity that is responsible for symptoms in Parkinson disease.


Neuroscience Letters | 1984

Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems

W.H. Oertel; Enrico Mugnaini

GABAergic neurons were localized in the rat basal ganglia by glutamate decarboxylase (GAD) immunohistochemistry. In the striatum (caudato-putamen, accumbens nucleus) a medium density of GAD-positive terminals was observed; a small number of medium-to-large size neurons and the vast majority of medium-size neurons were GAD immunoreactive. In addition, opioid peptide-like immunoreactivity was colocalized in a subclass of GAD-positive medium-size striatal neurons. The pallido-nigral system (GP, VP, EP, SNR) displayed a high density of GAD-positive axon terminals which synapsed upon dendrites and nerve cell bodies. The majority of pallido-nigral neurons also were GAD-immunoreactive. In contrast, the substantia nigra pars compacta and the subthalamic nucleus contained only few GAD-immunoreactive neurons.


The Journal of Comparative Neurology | 1996

Distribution of Descending Projections From Primary Auditory Neocortex to Inferior Colliculus Mimics the Topography of Intracollicular Projections

Enrique Saldaña; Maribel Feliciano; Enrico Mugnaini

To ascertain whether the auditory neocortex also innervates the central nucleus of the inferior colliculus (CNIC) and not only its dorsal (DCIC) and external (ECIC) cortices, the anterograde tracers Phaseolus vulgaris‐leucoagglutinin (PHA‐L) and biotinylated dextran (BD) were injected into the primary auditory neocortex of albino rats (Te1), and labeled corticocollicular fibers were studied via light and electron microscopy. Axons from discrete regions of Te1 form two rostrocaudally oriented laminar plexuses of terminal fibers in the ipsilateral inferior colliculus (IC) and one in the contralateral IC. The first ipsilateral plexus, located in the medial half of the IC, has a dorsomedial to ventrolateral orientation, parallel to the isofrequency planes of the IC; is continuous through the CNIC and DCIC; and extends into the rostral ECIC. The second plexus is located in the deep layers of the lateral ECIC. These two plexuses meet caudally and ventrally, at the border between the CNIC and the lateral ECIC. The plexus in the contralateral IC is less dense and shorter than the two ipsilateral plexuses and is symmetric to the medial plexus. The thickness of the three plexuses is correlated with the size of the injection site, and their mediolateral and dorsoventral positions change as the injection site in Te1 is displaced rostrocaudally, with more caudal injections resulting in more dorsolateral medial plexuses and more dorsomedial lateral plexuses. Furthermore, the ventromedial border of the IC receives nontopographic, convergent projections from wide regions of rostral portions of Te1. The distribution of these corticocollicular plexuses mimics the topography of previously described intracollicular fibers. Electron microscopy shows that, in all three subdivisions of the ipsilateral IC, corticocollicular fibers form small boutons with features generally associated with excitatory transmission; i.e., they contain round synaptic vesicles and form asymmetric synapses with thin dendritic shafts and spines.


Neuroscience | 1982

Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: A freeze-fracture study

P.T. Masa; Enrico Mugnaini

The plasma membranes of astrocytes and oligondendrocytes in the white matter of the cat were studied with the freeze-fracturing technique. The intramembrane particle profiles differ in the two type of cell. Orthogonal, small particle assembles and isolated globular particles 5-18 nm in diameter characterize the astrocytic plasmalemma, whereas the plasma membrane of oligodendrocytes shows large, tall globular particles, small globular particles, small ellipsoidal particles and previously undescribed, thin, short, rectilinear strands composed of fused subunits. Using these distinct differential features we can identify partners of glial cell junctions. We confirm the existence of interastrocytic gap junctions. Moreover, we identify numerous heterologous gap junctions between astrocytes and oligodendrocytic cell bodies, processes and the outer turn of myelin sheaths. Interoligodendrocytic gap junctions are not observed. Adjacent oligodendrocytes, however, form tight junctions consisting of linear P face strands and rows of particles; tight junctions are a reliable marker for oligodendroglial membranes. Connexons of interastrocytic gap junctions are packed in a crystalline array, while astrocyte-oligodendrocyte junctional connexons are closely packed but not crystalline. This study indicates that gap junctions between glial cells are pleomorphic and non-randomly distributed. The junctions between astrocytes and those between astrocytes and oligodendrocytes may had different roles in interglial and neuron-glia cooperation.


Annals of Neurology | 2010

FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis

Han Xiang Deng; Hong Zhai; Eileen H. Bigio; Jianhua Yan; Faisal Fecto; Kaouther Ajroud; Manjari Mishra; Senda Ajroud-Driss; Scott Heller; Robert Sufit; Nailah Siddique; Enrico Mugnaini; Teepu Siddique

Amyotrophic lateral sclerosis (ALS) is a fatal disorder of motor neuron degeneration. Most cases of ALS are sporadic (SALS), but about 5 to 10% of ALS cases are familial (FALS). Recent studies have shown that mutations in FUS are causal in approximately 4 to 5% of FALS and some apparent SALS cases. The pathogenic mechanism of the mutant FUS‐mediated ALS and potential roles of FUS in non‐FUS ALS remain to be investigated.


Journal of Neurocytology | 1980

Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse.

Enrico Mugnaini; Kirsten Kjelsberg Osen; Anne-Lise Dahl; Victor L. Friedrich; Gary E. Korte

SummaryThis paper describes the fine structure of granule cells and granule-associated interneurons (termed Golgi cells) in the cochlear nuclei of cat, rat and mouse. Granule cells and Golgi cells are present in defined regions of ventral and dorsal cochlear nuclei collectively termed ‘cochlear granule cell domain’.The granule cells are small neurons with two or three short dendrites that give rise to a few branches with terminal expansions. These participate in glomerular synaptic arrays similar to those of the cerebellar cortex. In the glomeruli the dendrites form short type 1 synapses with a large, centrally-located mossy bouton containing round synaptic vesicles and type 2 synapses with peripherally located, smaller boutons containing pleomorphic vesicles. The granule cell axon is thin and beaded and, on its way to the molecular layer of the DCN, takes a straight course, which in the ventral nucleus is parallel to the pial surface.Neurons of the second category resemble cerebellar Golgi cells and occur everywhere interspersed among the granule cells. They are usually larger than the granule cells and give rise to dendrites which may branch close to and curve around the cell body. The dendrites contain numerous mitochondria and are laden with thin appendages, giving them a hairy appearance. Both the cell body and the stem dendrites participate in glomerular synaptic arrays. Golgi cell glomeruli are distinguishable from the granule cell glomeruli by unique features of the dendritic profiles and by longer, type 1 synaptic junctions with the central mossy bouton. The Golgi cell axon forms a beaded plexus close to the parent cell body.The synaptic vesicle population of the mossy boutons suggests that they are a heterogeneous group and may have multiple origins. Apparently, each of the various classes participates in both granule and Golgi cell glomeruli. The smaller peripheral boutons with pleomorphic vesicles in the two types of glomeruli may represent Golgi cell axons which make synaptic contacts with both granule and Golgi cells. The Golgi cell dendrites, on the other hand, are also contacted by small boutonsen passant with round synaptic vesicles, which may represent granule cell axons. A tentative scheme of the circuitry in the cochlear granule cell domain is presented. The similarity with the cerebellar granule cell layer is striking.


Cell | 2000

The Deaf Jerker Mouse Has a Mutation in the Gene Encoding the Espin Actin-Bundling Proteins of Hair Cell Stereocilia and Lacks Espins

Lili Zheng; Gabriela Sekerková; Kelly A. Vranich; Lewis G. Tilney; Enrico Mugnaini; James R. Bartles

The espins are actin-bundling proteins of brush border microvilli and Sertoli cell-spermatid junctions. We have determined that espins are also present in hair cell stereocilia and have uncovered a connection between the espin gene and jerker, a recessive mutation that causes hair cell degeneration, deafness, and vestibular dysfunction. The espin gene maps to the same region of mouse chromosome 4 as jerker. The tissues of jerker mice do not accumulate espin proteins but contain normal levels of espin mRNAs. The espin gene of jerker mice has a frameshift mutation that affects the espin C-terminal actin-bundling module. These data suggest that jerker mice are, in effect, espin null and that the jerker phenotype results from a mutation in the espin gene.


The Journal of Neuroscience | 2005

G-Protein-Coupled Receptor Modulation of Striatal CaV1.3 L-Type Ca2+ Channels Is Dependent on a Shank-Binding Domain

Patricia A. Olson; Tatiana Tkatch; Salvador Hernandez-Lopez; Sasha Ulrich; Ema Ilijic; Enrico Mugnaini; Hua Zhang; Ilya Bezprozvanny; D. James Surmeier

Voltage-gated L-type Ca2+ channels are key determinants of synaptic integration and plasticity, dendritic electrogenesis, and activity-dependent gene expression in neurons. Fulfilling these functions requires appropriate channel gating, perisynaptic targeting, and linkage to intracellular signaling cascades controlled by G-protein-coupled receptors (GPCRs). Surprisingly, little is known about how these requirements are met in neurons. The studies described here shed new light on how this is accomplished. We show that D2 dopaminergic and M1 muscarinic receptors selectively modulate a biophysically distinctive subtype of L-type Ca2+ channels (CaV1.3) in striatal medium spiny neurons. The splice variant of these channels expressed in medium spiny neurons contains cytoplasmic Src homology 3 and PDZ (postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1) domains that bind the synaptic scaffolding protein Shank. Medium spiny neurons coexpressed CaV1.3-interacting Shank isoforms that colocalized with PSD-95 and CaV1.3a channels in puncta resembling spines on which glutamatergic corticostriatal synapses are formed. The modulation of CaV1.3 channels by D2 and M1 receptors was disrupted by intracellular dialysis of a peptide designed to compete for the CaV1.3 PDZ domain but not with one targeting a related PDZ domain. The modulation also was disrupted by application of peptides targeting the Shank interaction with Homer. Upstate transitions in medium spiny neurons driven by activation of glutamatergic receptors were suppressed by genetic deletion of CaV1.3 channels or by activation of D2 dopaminergic receptors. Together, these results suggest that Shank promotes the assembly of a signaling complex at corticostriatal synapses that enables key GPCRs to regulate L-type Ca2+ channels and the integration of glutamatergic synaptic events.


Brain Research Bulletin | 1984

Dorsal nucleus of the lateral lemniscus: A nucleus of GABAergic projection neurons

Joe C. Adams; Enrico Mugnaini

Immunocytochemical staining of the dorsal nucleus of the lateral lemniscus with a well characterized antiserum to glutamate decarboxylase reveals that all, or nearly all, cells in this nucleus show immunoreactivity without the use of agents to block axonal transport. Most somata and dendrites are also contacted by immunoreactive axonal endings. It has previously been established that this nucleus is richly innervated by ascending lemniscal fibers and contains different types of neurons that project to the inferior colliculus. One may conclude that this precollicular nucleus is a major GABAergic feedforward inhibitory center in the acoustic pathway.

Collaboration


Dive into the Enrico Mugnaini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ema Ilijic

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Lili Zheng

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Zhai

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge