Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ema Ilijic is active.

Publication


Featured researches published by Ema Ilijic.


Nature | 2007

‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease

C. Savio Chan; Jaime N. Guzman; Ema Ilijic; Jeff N. Mercer; Caroline Rick; Tatiana Tkatch; Gloria E. Meredith; D. James Surmeier

Why dopamine-containing neurons of the brain’s substantia nigra pars compacta die in Parkinson’s disease has been an enduring mystery. Our studies suggest that the unusual reliance of these neurons on L-type Cav1.3 Ca2+ channels to drive their maintained, rhythmic pacemaking renders them vulnerable to stressors thought to contribute to disease progression. The reliance on these channels increases with age, as juvenile dopamine-containing neurons in the substantia nigra pars compacta use pacemaking mechanisms common to neurons not affected in Parkinson’s disease. These mechanisms remain latent in adulthood, and blocking Cav1.3 Ca2+ channels in adult neurons induces a reversion to the juvenile form of pacemaking. Such blocking (‘rejuvenation’) protects these neurons in both in vitro and in vivo models of Parkinson’s disease, pointing to a new strategy that could slow or stop the progression of the disease.


Nature Neuroscience | 2006

Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models

Michelle Day; Zhongfeng Wang; Jun B. Ding; Xinhai An; C. A. Ingham; Andrew F Shering; David L. Wokosin; Ema Ilijic; Zhuoxin Sun; Allan R. Sampson; Enrico Mugnaini; Ariel Y. Deutch; Susan R. Sesack; Gordon W. Arbuthnott; D. James Surmeier

Parkinson disease is a common neurodegenerative disorder that leads to difficulty in effectively translating thought into action. Although it is known that dopaminergic neurons that innervate the striatum die in Parkinson disease, it is not clear how this loss leads to symptoms. Recent work has implicated striatopallidal medium spiny neurons (MSNs) in this process, but how and precisely why these neurons change is not clear. Using multiphoton imaging, we show that dopamine depletion leads to a rapid and profound loss of spines and glutamatergic synapses on striatopallidal MSNs but not on neighboring striatonigral MSNs. This loss of connectivity is triggered by a new mechanism—dysregulation of intraspine Cav1.3 L-type Ca2+ channels. The disconnection of striatopallidal neurons from motor command structures is likely to be a key step in the emergence of pathological activity that is responsible for symptoms in Parkinson disease.


Nature | 2010

Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1

Jaime N. Guzman; Javier Sanchez-Padilla; David L. Wokosin; Jyothisri Kondapalli; Ema Ilijic; Paul T. Schumacker; D. James Surmeier

Parkinson’s disease is a pervasive, ageing-related neurodegenerative disease the cardinal motor symptoms of which reflect the loss of a small group of neurons, the dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial oxidant stress is widely viewed as being responsible for this loss, but why these particular neurons should be stressed is a mystery. Here we show, using transgenic mice that expressed a redox-sensitive variant of green fluorescent protein targeted to the mitochondrial matrix, that the engagement of plasma membrane L-type calcium channels during normal autonomous pacemaking created an oxidant stress that was specific to vulnerable SNc dopaminergic neurons. The oxidant stress engaged defences that induced transient, mild mitochondrial depolarization or uncoupling. The mild uncoupling was not affected by deletion of cyclophilin D, which is a component of the permeability transition pore, but was attenuated by genipin and purine nucleotides, which are antagonists of cloned uncoupling proteins. Knocking out DJ-1 (also known as PARK7 in humans and Park7 in mice), which is a gene associated with an early-onset form of Parkinson’s disease, downregulated the expression of two uncoupling proteins (UCP4 (SLC25A27) and UCP5 (SLC25A14)), compromised calcium-induced uncoupling and increased oxidation of matrix proteins specifically in SNc dopaminergic neurons. Because drugs approved for human use can antagonize calcium entry through L-type channels, these results point to a novel neuroprotective strategy for both idiopathic and familial forms of Parkinson’s disease.


The Journal of Neuroscience | 2008

Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease.

Stefano Taverna; Ema Ilijic; D. James Surmeier

The principal neurons of the striatum, GABAergic medium spiny neurons (MSNs), are interconnected by local recurrent axon collateral synapses. Although critical to many striatal models, it is not clear whether these connections are random or whether they preferentially link functionally related groups of MSNs. To address this issue, dual whole patch-clamp recordings were made from striatal MSNs in brain slices taken from transgenic mice in which D1 or D2 dopamine receptor expression was reported with EGFP (enhanced green fluorescent protein). These studies revealed that unidirectional connections were common between both D1 receptor-expressing MSN (D1 MSN) pairs (26%) and D2 receptor-expressing MSN (D2 MSN) pairs (36%). D2 MSNs also commonly formed synapses on D1 MSNs (27% of pairs). Conversely, only 6% of the D1 MSNs formed detectable connections with D2 MSNs. Furthermore, synaptic connections formed by D1 MSNs were weaker than those formed by D2 MSNs, a difference that was attributable to fewer GABAA receptors at D1 MSN synapses. The strength of detectable recurrent connections was dramatically reduced in Parkinsons disease models. The studies demonstrate that recurrent collateral connections between MSNs are not random but rather differentially couple D1 and D2 MSNs. Moreover, this recurrent collateral network appears to be disrupted in Parkinsons disease models, potentially contributing to pathological alterations in MSN activity patterns and psychomotor symptoms.


The Journal of Neuroscience | 2005

G-Protein-Coupled Receptor Modulation of Striatal CaV1.3 L-Type Ca2+ Channels Is Dependent on a Shank-Binding Domain

Patricia A. Olson; Tatiana Tkatch; Salvador Hernandez-Lopez; Sasha Ulrich; Ema Ilijic; Enrico Mugnaini; Hua Zhang; Ilya Bezprozvanny; D. James Surmeier

Voltage-gated L-type Ca2+ channels are key determinants of synaptic integration and plasticity, dendritic electrogenesis, and activity-dependent gene expression in neurons. Fulfilling these functions requires appropriate channel gating, perisynaptic targeting, and linkage to intracellular signaling cascades controlled by G-protein-coupled receptors (GPCRs). Surprisingly, little is known about how these requirements are met in neurons. The studies described here shed new light on how this is accomplished. We show that D2 dopaminergic and M1 muscarinic receptors selectively modulate a biophysically distinctive subtype of L-type Ca2+ channels (CaV1.3) in striatal medium spiny neurons. The splice variant of these channels expressed in medium spiny neurons contains cytoplasmic Src homology 3 and PDZ (postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1) domains that bind the synaptic scaffolding protein Shank. Medium spiny neurons coexpressed CaV1.3-interacting Shank isoforms that colocalized with PSD-95 and CaV1.3a channels in puncta resembling spines on which glutamatergic corticostriatal synapses are formed. The modulation of CaV1.3 channels by D2 and M1 receptors was disrupted by intracellular dialysis of a peptide designed to compete for the CaV1.3 PDZ domain but not with one targeting a related PDZ domain. The modulation also was disrupted by application of peptides targeting the Shank interaction with Homer. Upstate transitions in medium spiny neurons driven by activation of glutamatergic receptors were suppressed by genetic deletion of CaV1.3 channels or by activation of D2 dopaminergic receptors. Together, these results suggest that Shank promotes the assembly of a signaling complex at corticostriatal synapses that enables key GPCRs to regulate L-type Ca2+ channels and the integration of glutamatergic synaptic events.


The Journal of Neuroscience | 2005

Dendritic Excitability of Mouse Frontal Cortex Pyramidal Neurons Is Shaped by the Interaction among HCN, Kir2, and Kleak Channels

Michelle Day; David B. Carr; Sasha Ulrich; Ema Ilijic; Tatiana Tkatch; D. James Surmeier

Dendritically placed, voltage-sensitive ion channels are key regulators of neuronal synaptic integration. In several cell types, hyperpolarization/cyclic nucleotide gated (HCN) cation channels figure prominently in dendritic mechanisms controlling the temporal summation of excitatory synaptic events. In prefrontal cortex, the sustained activity of pyramidal neurons in working memory tasks is thought to depend on the temporal summation of dendritic excitatory inputs. Yet we know little about how this is accomplished in these neurons and whether HCN channels play a role. To gain a better understanding of this process, layer V–VI pyramidal neurons in slices of mouse prelimbic and infralimbic cortex were studied. Somatic voltage-clamp experiments revealed the presence of rapidly activating and deactivating cationic currents attributable to HCN1/HCN2 channels. These channels were open at the resting membrane potential and had an apparent half-activation voltage near –90 mV. In the same voltage range, K+ currents attributable to Kir2.2/2.3 and K+-selective leak (Kleak) channels were prominent. Computer simulations grounded in the biophysical measurements suggested a dynamic interaction among Kir2, Kleak, and HCN channel currents in shaping membrane potential and the temporal integration of synaptic potentials. This inference was corroborated by experiment. Blockade of Kir2/Kleak channels caused neurons to depolarize, leading to the deactivation of HCN channels, the initiation of regular spiking (4–5 Hz), and enhanced temporal summation of EPSPs. These studies show that HCN channels are key regulators of synaptic integration in prefrontal pyramidal neurons but that their functional contribution is dependent on a partnership with Kir2 and Kleak channels.


Neurobiology of Disease | 2011

The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson's disease

Ema Ilijic; Jaime N. Guzman; Dalton J. Surmeier

The motor symptoms of Parkinsons disease (PD) are due to the progressive loss of dopamine (DA) neurons in substantia nigra pars compacta (SNc). Nothing is known to slow the progression of the disease, making the identification of potential neuroprotective agents of great clinical importance. Previous studies using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD have shown that antagonism of L-type Ca2+ channels protects SNc DA neurons. However, this was not true in a 6-hydroxydopamine (6-OHDA) model. One potential explanation for this discrepancy is that protection in the 6-OHDA model requires greater antagonism of Cav1.3 L-type Ca2+ channels thought to underlie vulnerability and this was not achievable with the low affinity dihydropyridine (DHP) antagonist used. To test this hypothesis, the DHP with the highest affinity for Cav1.3L-type channels-isradipine-was systemically administered and then the DA toxin 6-OHDA injected intrastriatally. Twenty-five days later, neuroprotection and plasma concentration of isradipine were determined. This analysis revealed that isradipine produced a dose-dependent sparing of DA fibers and cell bodies at concentrations achievable in humans, suggesting that isradipine is a potentially viable neuroprotective agent for PD.


Nature Neuroscience | 2012

Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease

Joshua A. Goldberg; Jaime N. Guzman; Chad M. Estep; Ema Ilijic; Jyothisri Kondapalli; Javier Sanchez-Padilla; D. James Surmeier

Mitochondrial oxidant stress is widely viewed as being critical to pathogenesis in Parkinsons disease. But the origins of this stress are poorly defined. One possibility is that it arises from the metabolic demands associated with regenerative activity. To test this hypothesis, we characterized neurons in the dorsal motor nucleus of the vagus (DMV), a population of cholinergic neurons that show signs of pathology in the early stages of Parkinsons disease, in mouse brain slices. DMV neurons were slow, autonomous pacemakers with broad spikes, leading to calcium entry that was weakly buffered. Using a transgenic mouse expressing a redox-sensitive optical probe targeted to the mitochondrial matrix, we found that calcium entry during pacemaking created a basal mitochondrial oxidant stress. Knocking out DJ-1 (also known as PARK7), a gene associated with early-onset Parkinsons disease, exacerbated this stress. These results point to a common mechanism underlying mitochondrial oxidant stress in Parkinsons disease and a therapeutic strategy to ameliorate it.


Nature Neuroscience | 2014

Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase

Javier Sanchez-Padilla; Jaime N. Guzman; Ema Ilijic; Jyothisri Kondapalli; Daniel Galtieri; Ben Yang; Simon Schieber; Wolfgang H. Oertel; David L. Wokosin; Paul T. Schumacker; D. James Surmeier

Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging-related neurodegenerative diseases, such as Parkinsons disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, we studied LC neurons using electrophysiological and optical approaches in ex vivo mouse brain slices. We found that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca2+ concentration that were attributable to the opening of L-type Ca2+ channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide increased the spike rate but differentially affected mitochondrial oxidant stress. Oxidant stress was also increased in an animal model of PD. Thus, our results point to activity-dependent Ca2+ entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons.


The Journal of Comparative Neurology | 2004

Bromodeoxyuridine administered during neurogenesis of the projection neurons causes cerebellar defects in rat

Gabriella Sekerková; Ema Ilijic; Enrico Mugnaini

Bromodeoxyuridine (BrdU) is broadly used in neuroscience to study embryonic development and adult neurogenesis. The potential toxicity of this halogenated pyrimidine analogue is frequently neglected. In this study, we administered BrdU in small doses by the progressively delayed cumulative labeling method to immunocytochemically tag different cerebellar cell types with antibodies to specific markers and BrdU in the same section. The well‐known structure of the cerebellum made it possible to ascertain several toxic effects of the treatment. Time‐pregnant rats were given five or six injections of 5 or 6 mg of BrdU (∼12–20 mg/kg) at 8‐hour intervals over 2 successive days between day 11 and 21 of pregnancy (E11–E12 to E20–E21), and the adult progeny was processed by immunocytochemistry. We demonstrate that this treatment effectively labeled distinct cerebellar cell populations but produced striking defects in the proliferation, migration, and settling of the Purkinje cells; reduced the size of the cerebellar cortex and nuclei; produced defects in the patterning of foliation; and also affected litter size, body weight, and mortality of the offspring. The observed toxic effects were consistent within individual treatment groups but varied between different treatment groups. Treatment with BrdU at the peak of neurogenesis of cerebellar projection neurons (E14) produced the most severe malformations. We observed no overt effects on the timing of neurogenesis for cerebellar neurons and glia across experimental groups. In conclusion, BrdU is a useful tool to study neural development, but its cytotoxicity represents a serious pitfall particularly when multiple doses are used to label cells. J. Comp. Neurol. 470:221–239, 2004.

Collaboration


Dive into the Ema Ilijic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatiana Tkatch

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Ben Yang

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge