Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Teardo is active.

Publication


Featured researches published by Enrico Teardo.


Nature | 2011

A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter

Diego De Stefani; Anna Raffaello; Enrico Teardo; Ildikò Szabò; Rosario Rizzuto

Mitochondrial Ca2+ homeostasis has a key role in the regulation of aerobic metabolism and cell survival, but the molecular identity of the Ca2+ channel, the mitochondrial calcium uniporter, is still unknown. Here we have identified in silico a protein (named MCU) that shares tissue distribution with MICU1 (also known as CBARA1), a recently characterized uniporter regulator, is present in organisms in which mitochondrial Ca2+ uptake was demonstrated and whose sequence includes two transmembrane domains. Short interfering RNA (siRNA) silencing of MCU in HeLa cells markedly reduced mitochondrial Ca2+ uptake. MCU overexpression doubled the matrix Ca2+ concentration increase evoked by inositol 1,4,5-trisphosphate-generating agonists, thus significantly buffering the cytosolic elevation. The purified MCU protein showed channel activity in planar lipid bilayers, with electrophysiological properties and inhibitor sensitivity of the uniporter. A mutant MCU, in which two negatively charged residues of the putative pore-forming region were replaced, had no channel activity and reduced agonist-dependent matrix Ca2+ concentration transients when overexpressed in HeLa cells. Overall, these data demonstrate that the 40-kDa protein identified is the channel responsible for ruthenium-red-sensitive mitochondrial Ca2+ uptake, thus providing a molecular basis for this process of utmost physiological and pathological relevance.


The EMBO Journal | 2013

The mitochondrial calcium uniporter is a multimer that can include a dominant‐negative pore‐forming subunit

Anna Raffaello; Diego De Stefani; Davide Sabbadin; Enrico Teardo; Giulia Merli; Anne Picard; Vanessa Checchetto; Stefano Moro; Ildikò Szabò; Rosario Rizzuto

Mitochondrial calcium uniporter (MCU) channel is responsible for Ruthenium Red‐sensitive mitochondrial calcium uptake. Here, we demonstrate MCU oligomerization by immunoprecipitation and Förster resonance energy transfer (FRET) and characterize a novel protein (MCUb) with two predicted transmembrane domains, 50% sequence similarity and a different expression profile from MCU. Based on computational modelling, MCUb includes critical amino‐acid substitutions in the pore region and indeed MCUb does not form a calcium‐permeable channel in planar lipid bilayers. In HeLa cells, MCUb is inserted into the oligomer and exerts a dominant‐negative effect, reducing the [Ca2+]mt increases evoked by agonist stimulation. Accordingly, in vitro co‐expression of MCUb with MCU drastically reduces the probability of observing channel activity in planar lipid bilayer experiments. These data unveil the structural complexity of MCU and demonstrate a novel regulatory mechanism, based on the inclusion of dominant‐negative subunits in a multimeric channel, that underlies the fine control of the physiologically and pathologically relevant process of mitochondrial calcium homeostasis.


Molecular Cell | 2014

MICU1 and MICU2 Finely Tune the Mitochondrial Ca2+ Uniporter by Exerting Opposite Effects on MCU Activity

Maria Patron; Vanessa Checchetto; Anna Raffaello; Enrico Teardo; Denis Vecellio Reane; Maura Mantoan; Veronica Granatiero; Ildikò Szabò; Diego De Stefani; Rosario Rizzuto

Summary Mitochondrial calcium accumulation was recently shown to depend on a complex composed of an inner-membrane channel (MCU and MCUb) and regulatory subunits (MICU1, MCUR1, and EMRE). A fundamental property of MCU is low activity at resting cytosolic Ca2+ concentrations, preventing deleterious Ca2+ cycling and organelle overload. Here we demonstrate that these properties are ensured by a regulatory heterodimer composed of two proteins with opposite effects, MICU1 and MICU2, which, both in purified lipid bilayers and in intact cells, stimulate and inhibit MCU activity, respectively. Both MICU1 and MICU2 are regulated by calcium through their EF-hand domains, thus accounting for the sigmoidal response of MCU to [Ca2+] in situ and allowing tight physiological control. At low [Ca2+], the dominant effect of MICU2 largely shuts down MCU activity; at higher [Ca2+], the stimulatory effect of MICU1 allows the prompt response of mitochondria to Ca2+ signals generated in the cytoplasm.


Science | 2013

A Thylakoid-Located Two-Pore K+ Channel Controls Photosynthetic Light Utilization in Plants

Enrico Teardo

pH Gradient in Light of Electroneutrality Photosynthesis in plant chloroplasts depends on a proton gradient to convert light energy into adenosine triphosphate. Studying Arabidopsis, Carraretto et al. (p. 114, published online 5 September; see the Perspective by Rochaix) identified the potassium channel TPK3 in the stacked membranes of the chloroplasts thylakoids as key to sustaining the proton gradient. As the thylakoid lumen acidifies on exposure to light, electroneutrality derives from TPK3 activity. TPK3 was able to optimize chloroplast responses to light across a wide range of intensities. Plants lacking functional TPK3 appeared normal when grown at modest light levels, but at higher light levels, the plants showed disruptions in overall growth and in thylakoid organization. The electrochemical gradient used to make adenosine triphosphate in photosynthesis is modulated by potassium counterflow. [Also see Perspective by Rochaix] The size of the light-induced proton motive force (pmf) across the thylakoid membrane of chloroplasts is regulated in response to environmental stimuli. Here, we describe a component of the thylakoid membrane, the two-pore potassium (K+) channel TPK3, which modulates the composition of the pmf through ion counterbalancing. Recombinant TPK3 exhibited potassium-selective channel activity sensitive to Ca2+ and H+. In Arabidopsis plants, the channel is found in the thylakoid stromal lamellae. Arabidopsis plants silenced for the TPK3 gene display reduced growth and altered thylakoid membrane organization. This phenotype reflects an impaired capacity to generate a normal pmf, which results in reduced CO2 assimilation and deficient nonphotochemical dissipation of excess absorbed light. Thus, the TPK3 channel manages the pmf necessary to convert photochemical energy into physiological functions.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Light- and pH-dependent structural changes in the PsbS subunit of photosystem II

Elisabetta Bergantino; Anna Segalla; Alessia Brunetta; Enrico Teardo; Fernanda Rigoni; Giorgio M. Giacometti; Ildikò Szabò

In higher plants, the PsbS subunit of photosystem II (PSII) plays a crucial role in pH- and xanthophyll-dependent nonphotochemical quenching of excess absorbed light energy, thus contributing to the defense mechanism against photoinhibition. We determined the amino acid sequence of Zea mays PsbS and produced an antibody that recognizes with high specificity a region of the protein located in the stroma-exposed loop between the second and third putative helices. By means of this antiserum, the thylakoid membranes of various higher plant species revealed the presence of a 42-kDa protein band, indicating the formation of a dimer of the 21-kDa PsbS protein. Crosslinking experiments and immunoblotting with other antisera seem to exclude the formation of a heterodimer with other PSII protein components. The PsbS monomer/dimer ratio in isolated thylakoid membranes was found to vary with luminal pH in a reversible manner, the monomer being the prevalent form at acidic and the dimer at alkaline pH. In intact chloroplasts and whole plants, dimer-to-monomer conversion is reversibly induced by light, known to cause luminal acidification. Sucrose-gradient centrifugation revealed a prevalent association of the PsbS monomer and dimer with light-harvesting complex and PSII core complexes, respectively. The finding of the existence of a light-induced change in the quaternary structure of the PsbS subunit may contribute to understanding the mechanism of PsbS action during nonphotochemical quenching.


Biochimica et Biophysica Acta | 2011

Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasmamembrane

Enrico Teardo; Elide Formentin; Anna Segalla; Giorgio M. Giacometti; Oriano Marin; Manuela Zanetti; Fiorella Lo Schiavo; Mario Zoratti; Ildikò Szabò

Bioinformatic approaches have allowed the identification in Arabidopsis thaliana of twenty genes encoding for homologues of animal ionotropic glutamate receptors (iGLRs). Some of these putative receptor proteins, grouped into three subfamilies, have been located to the plasmamembrane, but their possible location in organelles has not been investigated so far. In the present work we provide multiple evidence for the plastid localization of a glutamate receptor, AtGLR3.4, in Arabidopsis and tobacco. Biochemical analysis was performed using an antibody shown to specifically recognize both the native protein in Arabidopsis and the recombinant AtGLR3.4 fused to YFP expressed in tobacco. Western blots indicate the presence of AtGLR3.4 in both the plasmamembrane and in chloroplasts. In agreement, in transformed Arabidopsis cultured cells as well as in agroinfiltrated tobacco leaves, AtGLR3.4::YFP is detected both at the plasmamembrane and at the plastid level by confocal microscopy. The photosynthetic phenotype of mutant plants lacking AtGLR3.4 was also investigated. These results identify for the first time a dual localization of a glutamate receptor, revealing its presence in plastids and chloroplasts and opening the way to functional studies.


The Plant Cell | 2015

The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis

Stephan Wagner; Smrutisanjita Behera; Sara De Bortoli; David C. Logan; Philippe Fuchs; Luca Carraretto; Enrico Teardo; Laura Cendron; Thomas Nietzel; Magdalena Füßl; Fabrizio G. Doccula; Lorella Navazio; Mark D. Fricker; Olivier Van Aken; Iris Finkemeier; Andreas J. Meyer; Ildikò Szabò; Alex Costa; Markus Schwarzländer

The mitochondrial Ca2+ uptake protein At-MICU shapes mitochondrial Ca2+ dynamics, providing molecular in vivo evidence for the existence and function of a mitochondrial uniporter complex in plants. Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants.


Journal of Proteomics | 2012

Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach

Ryan Dosselli; Renato Millioni; Lucia Puricelli; Paolo Tessari; Giorgio Arrigoni; Cinzia Franchin; Anna Segalla; Enrico Teardo; Elena Reddi

Antimicrobial photodynamic therapy (PDT) is a promising tool to combat antibiotic-resistant bacterial infections. During PDT, bacteria are killed by reactive oxygen species generated by a visible light absorbing photosensitizer (PS). We used a classical proteomic approach that included two-dimensional gel electrophoresis and mass spectrometry analysis, to identify some proteins of Staphylococcus aureus that are damaged during PDT with the cationic PS meso-tetra-4-N-methyl pyridyl porphine (T4). Suspensions of S. aureus cells were incubated with selected T4 concentrations and irradiated with doses of blue light that reduced the survival to about 60% or 1%. Proteomics analyses of a membrane proteins enriched fraction revealed that these sub-lethal PDT treatments affected the expression of several functional classes of proteins, and that this damage is selective. Most of these proteins were found to be involved in metabolic activities, in oxidative stress response, in cell division and in the uptake of sugar. Subsequent analyses revealed that PDT treatments delayed the growth and considerably reduced the glucose consumption capacity of S. aureus cells. This investigation provides new insights towards the characterization of PDT induced damage and mechanism of bacterial killing using, for the first time, a proteomic approach.


Plant Physiology | 2015

Alternative Splicing-Mediated Targeting of the Arabidopsis GLUTAMATE RECEPTOR3.5 to Mitochondria Affects Organelle Morphology

Enrico Teardo; Luca Carraretto; Sara De Bortoli; Alex Costa; Smrutisanjita Behera; Richard Wagner; Fiorella Lo Schiavo; Elide Formentin; Ildikò Szabò

A unique mitochondrial ion channel affects organelle physiology and its lack is associated with senescence in the model plant Arabidopsis. Since the discovery of 20 genes encoding for putative ionotropic glutamate receptors in the Arabidopsis (Arabidopsis thaliana) genome, there has been considerable interest in uncovering their physiological functions. For many of these receptors, neither their channel formation and/or physiological roles nor their localization within the plant cells is known. Here, we provide, to our knowledge, new information about in vivo protein localization and give insight into the biological roles of the so-far uncharacterized Arabidopsis GLUTAMATE RECEPTOR3.5 (AtGLR3.5), a member of subfamily 3 of plant glutamate receptors. Using the pGREAT vector designed for the expression of fusion proteins in plants, we show that a splicing variant of AtGLR3.5 targets the inner mitochondrial membrane, while the other variant localizes to chloroplasts. Mitochondria of knockout or silenced plants showed a strikingly altered ultrastructure, lack of cristae, and swelling. Furthermore, using a genetically encoded mitochondria-targeted calcium probe, we measured a slightly reduced mitochondrial calcium uptake capacity in the knockout mutant. These observations indicate a functional expression of AtGLR3.5 in this organelle. Furthermore, AtGLR3.5-less mutant plants undergo anticipated senescence. Our data thus represent, to our knowledge, the first evidence of splicing-regulated organellar targeting of a plant ion channel and identify the first cation channel in plant mitochondria from a molecular point of view.


Nature Communications | 2016

A voltage-dependent chloride channel fine-tunes photosynthesis in plants

Andrei Herdean; Enrico Teardo; Anders K. Nilsson; Bernard E. Pfeil; Oskar N. Johansson; Renáta Ünnep; Gergely Nagy; Ottó Zsiros; Somnath Dana; Katalin Solymosi; Győző Garab; Ildikò Szabò; Cornelia Spetea; Björn Lundin

In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl−) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl− channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments.

Collaboration


Dive into the Enrico Teardo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge