Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosario Rizzuto is active.

Publication


Featured researches published by Rosario Rizzuto.


Nature | 2011

A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter

Diego De Stefani; Anna Raffaello; Enrico Teardo; Ildikò Szabò; Rosario Rizzuto

Mitochondrial Ca2+ homeostasis has a key role in the regulation of aerobic metabolism and cell survival, but the molecular identity of the Ca2+ channel, the mitochondrial calcium uniporter, is still unknown. Here we have identified in silico a protein (named MCU) that shares tissue distribution with MICU1 (also known as CBARA1), a recently characterized uniporter regulator, is present in organisms in which mitochondrial Ca2+ uptake was demonstrated and whose sequence includes two transmembrane domains. Short interfering RNA (siRNA) silencing of MCU in HeLa cells markedly reduced mitochondrial Ca2+ uptake. MCU overexpression doubled the matrix Ca2+ concentration increase evoked by inositol 1,4,5-trisphosphate-generating agonists, thus significantly buffering the cytosolic elevation. The purified MCU protein showed channel activity in planar lipid bilayers, with electrophysiological properties and inhibitor sensitivity of the uniporter. A mutant MCU, in which two negatively charged residues of the putative pore-forming region were replaced, had no channel activity and reduced agonist-dependent matrix Ca2+ concentration transients when overexpressed in HeLa cells. Overall, these data demonstrate that the 40-kDa protein identified is the channel responsible for ruthenium-red-sensitive mitochondrial Ca2+ uptake, thus providing a molecular basis for this process of utmost physiological and pathological relevance.


Cell | 2005

Electron transfer between cytochrome C and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis

Marco Giorgio; Enrica Migliaccio; Francesca Orsini; Demis Paolucci; Maurizio Moroni; Cristina Contursi; Giovanni Pelliccia; Lucilla Luzi; Saverio Minucci; Massimo Marcaccio; Paolo Pinton; Rosario Rizzuto; Paolo Bernardi; Francesco Paolucci; Pier Giuseppe Pelicci

Reactive oxygen species (ROS) are potent inducers of oxidative damage and have been implicated in the regulation of specific cellular functions, including apoptosis. Mitochondrial ROS increase markedly after proapoptotic signals, though the biological significance and the underlying molecular mechanisms remain undetermined. P66Shc is a genetic determinant of life span in mammals, which regulates ROS metabolism and apoptosis. We report here that p66Shc is a redox enzyme that generates mitochondrial ROS (hydrogen peroxide) as signaling molecules for apoptosis. For this function, p66Shc utilizes reducing equivalents of the mitochondrial electron transfer chain through the oxidation of cytochrome c. Redox-defective mutants of p66Shc are unable to induce mitochondrial ROS generation and swelling in vitro or to mediate mitochondrial apoptosis in vivo. These data demonstrate the existence of alternative redox reactions of the mitochondrial electron transfer chain, which evolved to generate proapoptotic ROS in response to specific stress signals.


Nature Cell Biology | 2008

Regulation of autophagy by cytoplasmic p53

Ezgi Tasdemir; M. Chiara Maiuri; Lorenzo Galluzzi; Ilio Vitale; Mojgan Djavaheri-Mergny; Marcello D'Amelio; Alfredo Criollo; Eugenia Morselli; Changlian Zhu; Francis Harper; Ulf Nannmark; Chrysanthi Samara; Paolo Pinton; Jose Miguel Vicencio; Rosa Carnuccio; Ute M. Moll; Frank Madeo; Patrizia Paterlini-Bréchot; Rosario Rizzuto; Gérard Pierron; Klas Blomgren; Nektarios Tavernarakis; Patrice Codogno; Francesco Cecconi; Guido Kroemer

Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53−/− cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.


Nature Reviews Molecular Cell Biology | 2012

Mitochondria as sensors and regulators of calcium signalling

Rosario Rizzuto; Diego De Stefani; Anna Raffaello; Cristina Mammucari

During the past two decades calcium (Ca2+) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca2+ uptake was shown to control intracellular Ca2+ signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca2+ levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca2+ transporters has been revealed, opening new perspectives for investigation and molecular intervention.


Journal of Cell Biology | 2006

Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels

György Szabadkai; Katiuscia Bianchi; Péter Várnai; Diego De Stefani; Mariusz R. Wieckowski; Dario Cavagna; Anikó Ilona Nagy; Tamas Balla; Rosario Rizzuto

The voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane mediates metabolic flow, Ca2+, and cell death signaling between the endoplasmic reticulum (ER) and mitochondrial networks. We demonstrate that VDAC1 is physically linked to the endoplasmic reticulum Ca2+-release channel inositol 1,4,5-trisphosphate receptor (IP3R) through the molecular chaperone glucose-regulated protein 75 (grp75). Functional interaction between the channels was shown by the recombinant expression of the ligand-binding domain of the IP3R on the ER or mitochondrial surface, which directly enhanced Ca2+ accumulation in mitochondria. Knockdown of grp75 abolished the stimulatory effect, highlighting chaperone-mediated conformational coupling between the IP3R and the mitochondrial Ca2+ uptake machinery. Because organelle Ca2+ homeostasis influences fundamentally cellular functions and death signaling, the central location of grp75 may represent an important control point of cell fate and pathogenesis.


Oncogene | 2008

Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis

Paolo Pinton; Carlotta Giorgi; Roberta Siviero; Erika Zecchini; Rosario Rizzuto

There is a growing consensus that the various forms of cell death (necrosis, apoptosis and autophagy) are not separated by strict boundaries, but rather share molecular effectors and signaling routes. Among the latter, a clear role is played by calcium (Ca2+), the ubiquitous second messenger involved in the control of a broad variety of physiological events. Fine tuning of intracellular Ca2+ homeostasis by anti- and proapoptotic proteins shapes the Ca2+ signal to which mitochondria and other cellular effectors are exposed, and hence the efficiency of various cell death inducers. Here, we will review: (i) the evidence linking calcium homeostasis to the regulation of apoptotic, and more recently autophagic cell death, (ii) the discussion of mitochondria as a critical, although not unique checkpoint and (iii) the molecular and functional elucidation of ER/mitochondria contacts, corresponding to the mitochondria-associated membrane (MAM) subfraction and proposed to be a specialized signaling microdomain.


The EMBO Journal | 2001

The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide‐induced apoptosis: significance for the molecular mechanism of Bcl‐2 action

Paolo Pinton; Davide Ferrari; Elena Rapizzi; Francesco Di Virgilio; Tullio Pozzan; Rosario Rizzuto

The mechanism of action of the anti‐apoptotic oncogene Bcl‐2 is still largely obscure. We have recently shown that the overexpression of Bcl‐2 in HeLa cells reduces the Ca2+ concentration in the endoplasmic reticulum ([Ca2+]er) by increasing the passive Ca2+ leak from the organelle. To investigate whether this Ca2+ depletion is part of the mechanism of action of Bcl‐2, we mimicked the Bcl‐2 effect on [Ca2+]er by different pharmacological and molecular approaches. All conditions that lowered [Ca2+]er protected HeLa cells from ceramide, a Bcl‐2‐sensitive apoptotic stimulus, while treatments that increased [Ca2+]er had the opposite effect. Surprisingly, ceramide itself caused the release of Ca2+ from the endoplasmic reticulum and thus [Ca2+] increased both in the cytosol and in the mitochondrial matrix, paralleled by marked alterations in mitochondria morphology. The reduction of [Ca2+]er levels, as well as the buffering of cytoplasmic [Ca2+] changes, prevented mitochondrial damage and protected cells from apoptosis. It is therefore concluded that the Bcl‐2‐dependent reduction of [Ca2+]er is an important component of the anti‐apoptotic program controlled by this oncogene.


Cell Death & Differentiation | 2009

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

Lorenzo Galluzzi; Stuart A. Aaronson; John M. Abrams; Emad S. Alnemri; David W. Andrews; Eric H. Baehrecke; Nicolas G. Bazan; Mikhail V. Blagosklonny; Klas Blomgren; Christoph Borner; Dale E. Bredesen; Catherine Brenner; Maria Castedo; John A. Cidlowski; Aaron Ciechanover; Gerald M. Cohen; V De Laurenzi; R De Maria; Mohanish Deshmukh; Brian David Dynlacht; Wafik S. El-Deiry; Richard A. Flavell; Simone Fulda; Carmen Garrido; Pierre Golstein; Marie Lise Gougeon; Douglas R. Green; Hinrich Gronemeyer; György Hajnóczky; J. M. Hardwick

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.


The Journal of Physiology | 2000

Mitochondria as all‐round players of the calcium game

Rosario Rizzuto; Paolo Bernardi; Tullio Pozzan

Although it has been known for over three decades that mitochondria are endowed with a complex array of Ca2+ transporters and that key enzymes of mitochondrial metabolism are regulated by Ca2+, the possibility that physiological stimuli that raise the [Ca2+] of the cytoplasm could trigger major mitochondrial Ca2+ uptake has long been considered unlikely, based on the low affinity of the mitochondrial transporters and the limited amplitude of the cytoplasmic [Ca2+] rises. The direct measurement of mitochondrial [Ca2+] with highly selective probes has led to a complete reversion of this view, by demonstrating that, after cell stimulation, the cytoplasmic Ca2+ signal is always paralleled by a much larger rise in [Ca2+] in the mitochondrial matrix. This observation has rejuvenated the study of mitochondrial Ca2+ transport and novel, unexpected results have altered long‐standing dogmas in the field of calcium signalling. Here we focus on four main topics: (i) the current knowledge of the functional properties of the Ca2+ transporters and of the thermodynamic constraints under which they operate; (ii) the occurrence of mitochondrial Ca2+ uptake in living cells and the key role of local signalling routes between the mitochondria and the Ca2+ sources; (iii) the physiological consequences of Ca2+ transport for both mitochondrial function and the modulation of the cytoplasmic Ca2+ signal; and (iv) evidence that alterations of mitochondrial Ca2+ signalling may occur in pathophysiological conditions.


Cell | 2005

Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity

Daniele Bano; Kenneth W. Young; Christopher J. Guerin; Ros LeFeuvre; Nancy J. Rothwell; Luigi Naldini; Rosario Rizzuto; Ernesto Carafoli; Pierluigi Nicotera

In brain ischemia, gating of postsynaptic glutamate receptors and other membrane channels triggers intracellular Ca2+ overload and cell death. In excitotoxic settings, the initial Ca2+ influx through glutamate receptors is followed by a second uncontrolled Ca2+ increase that leads to neuronal demise. Here we report that the major plasma membrane Ca2+ extruding system, the Na+/Ca2+ exchanger (NCX), is cleaved during brain ischemia and in neurons undergoing excitotoxicity. Inhibition of Ca2+-activated proteases (calpains) by overexpressing their endogenous inhibitor protein, calpastatin or the expression of an NCX isoform not cleaved by calpains, prevented Ca2+ overload and rescued neurons from excitotoxic death. Conversely, down-regulation of NCX by siRNA compromised neuronal Ca2+ handling, transforming the Ca2+ transient elicited by non-excitotoxic glutamate concentrations into a lethal Ca2+overload. Thus, proteolytic inactivation of NCX-driven neuronal Ca2+ extrusion is responsible for the delayed excitotoxic Ca2+ deregulation and neuronal death.

Collaboration


Dive into the Rosario Rizzuto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric A. Schon

Columbia University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge