Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrique Fuentes-Mattei is active.

Publication


Featured researches published by Enrique Fuentes-Mattei.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Aurora B kinase phosphorylates and instigates degradation of p53

Chris Gully; Guermarie Velazquez-Torres; Ji Hyun Shin; Enrique Fuentes-Mattei; Edward Wang; Colin Carlock; Jian Chen; Daniel Rothenberg; Henry P. Adams; Hyun Ho Choi; Sergei Guma; Liem Phan; Ping Chieh Chou; Chun Hui Su; Fanmao Zhang; Jiun Sheng Chen; Tsung Ying Yang; Sai Ching J. Yeung; Mong Hong Lee

Aurora B is a mitotic checkpoint kinase that plays a pivotal role in the cell cycle, ensuring correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in many types of human cancers, which has made it an attractive target for cancer therapies. Tumor suppressor p53 is a genome guardian and important negative regulator of the cell cycle. Whether Aurora B and p53 are coordinately regulated during the cell cycle is not known. We report that Aurora B directly interacts with p53 at different subcellular localizations and during different phases of the cell cycle (for instance, at the nucleus in interphase and the centromeres in prometaphase of mitosis). We show that Aurora B phosphorylates p53 at S183, T211, and S215 to accelerate the degradation of p53 through the polyubiquitination–proteasome pathway, thus functionally suppressing the expression of p53 target genes involved in cell cycle inhibition and apoptosis (e.g., p21 and PUMA). Pharmacologic inhibition of Aurora B in cancer cells with WT p53 increased p53 protein level and expression of p53 target genes to inhibit tumor growth. Together, these results define a mechanism of p53 inactivation during the cell cycle and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise the tumor suppressor function of p53. We have elucidated the antineoplastic mechanism for Aurora B kinase inhibitors in cancer cells with WT p53.


Journal of the National Cancer Institute | 2014

Effects of Obesity on Transcriptomic Changes and Cancer Hallmarks in Estrogen Receptor–Positive Breast Cancer

Enrique Fuentes-Mattei; Guermarie Velazquez-Torres; Liem Phan; Fanmao Zhang; Ping Chieh Chou; Ji Hyun Shin; Hyun Ho Choi; Jiun Sheng Chen; Ruiying Zhao; Jian Chen; Chris Gully; Colin Carlock; Yuan Qi; Ya Zhang; Yun Wu; Francisco J. Esteva; Yongde Luo; Wallace L. McKeehan; Joe Ensor; Gabriel N. Hortobagyi; Lajos Pusztai; W. Fraser Symmans; Mong Hong Lee; Sai Ching Jim Yeung

Background Obesity increases the risk of cancer death among postmenopausal women with estrogen receptor–positive (ER+) breast cancer, but the direct evidence for the mechanisms is lacking. The purpose of this study is to demonstrate direct evidence for the mechanisms mediating this epidemiologic phenomenon. Methods We analyzed transcriptomic profiles of pretreatment biopsies from a prospective cohort of 137 ER+ breast cancer patients. We generated transgenic (MMTV-TGFα;A y /a) and orthotopic/syngeneic (A y /a) obese mouse models to investigate the effect of obesity on tumorigenesis and tumor progression and to determine biological mechanisms using whole-genome transcriptome microarrays and protein analyses. We used a coculture system to examine the impact of adipocytes/adipokines on breast cancer cell proliferation. All statistical tests were two-sided. Results Functional transcriptomic analysis of patients revealed the association of obesity with 59 biological functional changes (P < .05) linked to cancer hallmarks. Gene enrichment analysis revealed enrichment of AKT-target genes (P = .04) and epithelial–mesenchymal transition genes (P = .03) in patients. Our obese mouse models demonstrated activation of the AKT/mTOR pathway in obesity-accelerated mammary tumor growth (3.7- to 7.0-fold; P < .001; n = 6–7 mice per group). Metformin or everolimus can suppress obesity-induced secretion of adipokines and breast tumor formation and growth (0.5-fold, P = .04; 0.3-fold, P < .001, respectively; n = 6–8 mice per group). The coculture model revealed that adipocyte-secreted adipokines (eg, TIMP-1) regulate adipocyte-induced breast cancer cell proliferation and invasion. Metformin suppress adipocyte-induced cell proliferation and adipocyte-secreted adipokines in vitro. Conclusions Adipokine secretion and AKT/mTOR activation play important roles in obesity-accelerated breast cancer aggressiveness in addition to hyperinsulinemia, estrogen signaling, and inflammation. Metformin and everolimus have potential for therapeutic interventions of ER+ breast cancer patients with obesity.


Cell Cycle | 2012

Differential impact of structurally different anti-diabetic drugs on proliferation and chemosensitivity of acute lymphoblastic leukemia cells

Jingxuan Pan; Chun Chen; Yanli Jin; Enrique Fuentes-Mattei; Guermarie Velazquez-Tores; Juliana Benito; Marina Konopleva; Michael Andreeff; Mong Hong Lee; Sai Ching Jim Yeung

Hyperglycemia during hyper-CVAD chemotherapy is associated with poor outcomes of acute lymphoblastic leukemia (ALL) (Cancer 2004; 100:1179–85). The optimal clinical strategy to manage hyperglycemia during hyper-CVAD is unclear. To examine whether anti-diabetic pharmacotherapy can influence chemosensitivity of ALL cells, we examined the impacts of different anti-diabetic agents on ALL cell lines and patient samples. Pharmacologically achievable concentrations of insulin, aspart and glargine significantly increased the number of ALL cells, and aspart and glargine did so at lower concentrations than human insulin. In contrast, metformin and rosiglitazone significantly decreased the cell number. Human insulin and analogs activated AKT/mTOR signaling and stimulated ALL cell proliferation (as measured by flow cytometric methods), but metformin and rosiglitazone blocked AKT/mTOR signaling and inhibited proliferation. Metformin 500 μM and rosiglitazone 10 μM were found to sensitize Reh cells to daunorubicin, while aspart, glargine and human insulin (all at 1.25 mIU/L) enhanced chemoresistance. Metformin and rosiglitazone enhanced daunorubicin-induced apoptosis, while insulin, aspart and glargine antagonized daunorubicin-induced apoptosis. In addition, metformin increased etoposide-induced and L-asparaginase-induced apoptosis; rosiglitazone increased etoposide-induced and vincristine-induced apoptosis. In conclusion, our results suggest that use of insulins to control hyperglycemia in ALL patients may contribute to anthracycline chemoresistance, while metformin and thiazolidinediones may improve chemosensitivity to anthracycline as well as other chemotherapy drugs through their different impacts on AKT/mTOR signaling in leukemic cells. Our data suggest that the choice of anti-diabetic pharmacotherapy during chemotherapy may influence clinical outcomes in ALL.


European Urology | 2016

Gene Expression Profile of the Clinically Aggressive Micropapillary Variant of Bladder Cancer.

Charles C. Guo; Vipulkumar Dadhania; Li Zhang; Tadeusz Majewski; Jolanta Bondaruk; Maciej Sykulski; Weronika Wronowska; Anna Gambin; Yan Wang; Shizhen Zhang; Enrique Fuentes-Mattei; Ashish M. Kamat; Colin P. Dinney; Arlene O. Siefker-Radtke; Woonyoung Choi; Keith A. Baggerly; David J. McConkey; John N. Weinstein; Bogdan Czerniak

BACKGROUND Progression of conventional urothelial carcinoma of the bladder to a tumor with unique microscopic features referred to as micropapillary carcinoma is coupled with aggressive clinical behavior signified by a high propensity for metastasis to regional lymph nodes and distant organs resulting in shorter survival. OBJECTIVE To analyze the expression profile of micropapillary cancer and define its molecular features relevant to clinical behavior. DESIGN, SETTING, AND PARTICIPANTS We retrospectively identified 43 patients with micropapillary bladder cancers and a reference set of 89 patients with conventional urothelial carcinomas and performed whole-genome expression messenger RNA profiling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The tumors were segregated into distinct groups according to hierarchical clustering analyses. They were also classified according to luminal, p53-like, and basal categories using a previously described algorithm. We applied Ingenuity Pathway Analysis software (Qiagen, Redwood City, CA, USA) and gene set enrichment analysis for pathway analyses. Cox proportional hazards models and Kaplan-Meier methods were used to assess the relationship between survival and molecular subtypes. The expression profile of micropapillary cancer was validated for selected markers by immunohistochemistry on parallel tissue microarrays. RESULTS AND LIMITATIONS We show that the striking features of micropapillary cancer are downregulation of miR-296 and activation of chromatin-remodeling complex RUVBL1. In contrast to conventional urothelial carcinomas that based on their expression can be equally divided into luminal and basal subtypes, micropapillary cancer is almost exclusively luminal, displaying enrichment of active peroxisome proliferator-activated receptor γ and suppression of p63 target genes. As with conventional luminal urothelial carcinomas, a subset of micropapillary cancers exhibit activation of wild-type p53 downstream genes and represent the most aggressive molecular subtype of the disease with the shortest survival. The involvement of miR-296 and RUVBL1 in the development of micropapillary bladder cancer was identified by the analyses of correlative associations of genome expression profiles and requires mechanistic validation. CONCLUSIONS Micropapillary cancer evolves through the luminal pathway and is characterized by the activation of miR-296 and RUVBL1 target genes. PATIENT SUMMARY Our observations have important implications for prognosis and for possible future development of more effective therapies for micropapillary bladder cancer.


Nature Communications | 2016

Obesity-associated NLRC4 inflammasome activation drives breast cancer progression

Ryan Kolb; Liem Phan; Nicholas Borcherding; Yinghong Liu; Fang Yuan; Ann M. Janowski; Qing Xie; Kathleen R. Markan; Wei Li; Matthew J. Potthoff; Enrique Fuentes-Mattei; Lesley G. Ellies; C. Michael Knudson; Mong Hong Lee; Sai Ching J. Yeung; Suzanne L. Cassel; Fayyaz S. Sutterwala; Weizhou Zhang

Obesity is associated with an increased risk of developing breast cancer and is also associated with worse clinical prognosis. The mechanistic link between obesity and breast cancer progression remains unclear, and there has been no development of specific treatments to improve the outcome of obese cancer patients. Here we show that obesity-associated NLRC4 inflammasome activation/ interleukin (IL)-1 signalling promotes breast cancer progression. The tumour microenvironment in the context of obesity induces an increase in tumour-infiltrating myeloid cells with an activated NLRC4 inflammasome that in turn activates IL-1β, which drives disease progression through adipocyte-mediated vascular endothelial growth factor A (VEGFA) expression and angiogenesis. Further studies show that treatment of mice with metformin inhibits obesity-associated tumour progression associated with a marked decrease in angiogenesis. This report provides a causal mechanism by which obesity promotes breast cancer progression and lays out a foundation to block NLRC4 inflammasome activation or IL-1β signalling transduction that may be useful for the treatment of obese cancer patients.


Clinical Cancer Research | 2017

Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers.

Katrien Van Roosbroeck; Francesca Fanini; Tetsuro Setoyama; Cristina Ivan; Cristian Rodriguez-Aguayo; Enrique Fuentes-Mattei; Lianchun Xiao; Ivan Vannini; Roxana S. Redis; Lucilla D'Abundo; Xinna Zhang; Milena S. Nicoloso; Simona Rossi; Vianey Gonzalez-Villasana; Rajesha Rupaimoole; Manuela Ferracin; Fortunato Morabito; Antonino Neri; Peter P. Ruvolo; Vivian Ruvolo; Chad V. Pecot; Dino Amadori; Lynne V. Abruzzo; Steliana Calin; Xuemei Wang; M. James You; Alessandra Ferrajoli; Robert Z. Orlowski; William Plunkett; Tara M. Lichtenberg

Purpose: The oncogenic miR-155 is upregulated in many human cancers, and its expression is increased in more aggressive and therapy-resistant tumors, but the molecular mechanisms underlying miR-155-induced therapy resistance are not fully understood. The main objectives of this study were to determine the role of miR-155 in resistance to chemotherapy and to evaluate anti-miR-155 treatment to chemosensitize tumors. Experimental Design: We performed in vitro studies on cell lines to investigate the role of miR-155 in therapy resistance. To assess the effects of miR-155 inhibition on chemoresistance, we used an in vivo orthotopic lung cancer model of athymic nude mice, which we treated with anti-miR-155 alone or in combination with chemotherapy. To analyze the association of miR-155 expression and the combination of miR-155 and TP53 expression with cancer survival, we studied 956 patients with lung cancer, chronic lymphocytic leukemia, and acute lymphoblastic leukemia. Results: We demonstrate that miR-155 induces resistance to multiple chemotherapeutic agents in vitro, and that downregulation of miR-155 successfully resensitizes tumors to chemotherapy in vivo. We show that anti-miR-155-DOPC can be considered non-toxic in vivo. We further demonstrate that miR-155 and TP53 are linked in a negative feedback mechanism and that a combination of high expression of miR-155 and low expression of TP53 is significantly associated with shorter survival in lung cancer. Conclusions: Our findings support the existence of an miR-155/TP53 feedback loop, which is involved in resistance to chemotherapy and which can be specifically targeted to overcome drug resistance, an important cause of cancer-related death. Clin Cancer Res; 23(11); 2891–904. ©2016 AACR.


Nature Communications | 2015

The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming

Liem Phan; Ping Chieh Chou; Guermarie Velazquez-Torres; Ismael Samudio; Kenneth Parreno; Yaling Huang; Chieh Tseng; Thuy Vu; Chris Gully; Chun Hui Su; Edward Wang; Jian Chen; Hyun Ho Choi; Enrique Fuentes-Mattei; Ji-Hyun Shin; Christine Y. Shiang; Brian C. Grabiner; Marzenna Blonska; Stephen Skerl; Yiping Shao; Dianna Cody; Jorge Delacerda; Charles Kingsley; Douglas Webb; Colin Carlock; Zhongguo Zhou; Yun Chih Hsieh; Jae-Hyuk Lee; Andrew M. Elliott; Marc S. Ramirez

Summary Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumourigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programs by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anti-cancer metabolism therapy development in future.


Nature Communications | 2014

CSN6 drives carcinogenesis by positively regulating Myc stability

Jian Chen; Ji Hyun Shin; Ruiying Zhao; Liem Phan; Hua Wang; Yuwen Xue; Sean M. Post; Hyun Ho Choi; Jiun Sheng Chen; Edward Wang; Zhongguo Zhou; Chieh Tseng; Christopher Gully; Guermarie Velazquez-Torres; Enrique Fuentes-Mattei; Giselle Yeung; Yi Qiao; Ping Chieh Chou; Chun Hui Su; Yun Chih Hsieh; Shih Lan Hsu; Kazufumi Ohshiro; Tattym Shaikenov; Huamin Wang; Sai Ching Jim Yeung; Mong Hong Lee

Summary Cullin-RING ubiquitin ligases (CRL) are critical in ubiquitinating Myc, while COP9 signalosome (CSN) controls neddylation of Cullin in CRL. The mechanistic link between Cullin neddylation and Myc ubiquitination/degradation is unclear. Here we show that Myc is a target of the CSN subunit 6 (CSN6)–Cullin signaling axis and that CSN6 is a positive regulator of Myc. CSN6 enhanced neddylation of Cullin-1 and facilitated auto-ubiquitination/degradation of Fbxw7, a component of CRL involved in Myc ubiquitination, thereby stabilizing Myc. Csn6 haplo-insufficiency decreased Cullin-1 neddylation but increased Fbxw7 stability to compromise Myc stability and activity in an Eµ-Myc mouse model, resulting in decelerated lymphomagenesis. We found that CSN6 overexpression, which leads to aberrant expression of Myc target genes, is frequent in human cancers. Together, these results define a mechanism for the regulation of Myc stability through the CSN-Cullin-Fbxw7 axis and provide insights into the correlation of CSN6 overexpression with Myc stabilization/activation during tumorigenesis.


Clinical Cancer Research | 2015

Rac1/Pak1/p38/MMP-2 Axis Regulates Angiogenesis in Ovarian Cancer

Vianey Gonzalez-Villasana; Enrique Fuentes-Mattei; Cristina Ivan; Heather J. Dalton; Cristian Rodriguez-Aguayo; Ricardo J. Fernandez-de Thomas; Paloma Monroig; Guermarie Velazquez-Torres; Rebecca A. Previs; Sunila Pradeep; Nermin Kahraman; Huamin Wang; Pinar Kanlikilicer; Bulent Ozpolat; George A. Calin; Anil K. Sood; Gabriel Lopez-Berestein

Purpose: Zoledronic acid is being increasingly recognized for its antitumor properties, but the underlying functions are not well understood. In this study, we hypothesized that zoledronic acid inhibits ovarian cancer angiogenesis preventing Rac1 activation. Experimental Design: The biologic effects of zoledronic acid were examined using a series of in vitro [cell invasion, cytokine production, Rac1 activation, reverse-phase protein array, and in vivo (orthotopic mouse models)] experiments. Results: There was significant inhibition of ovarian cancer (HeyA8-MDR and OVCAR-5) cell invasion as well as reduced production of proangiogenic cytokines in response to zoledronic acid treatment. Furthermore, zoledronic acid inactivated Rac1 and decreased the levels of Pak1/p38/matrix metalloproteinase-2 in ovarian cancer cells. In vivo, zoledronic acid reduced tumor growth, angiogenesis, and cell proliferation and inactivated Rac1 in both HeyA8-MDR and OVCAR-5 models. These in vivo antitumor effects were enhanced in both models when zoledronic acid was combined with nab-paclitaxel. Conclusions: Zoledronic acid has robust antitumor and antiangiogenic activity and merits further clinical development as ovarian cancer treatment. Clin Cancer Res; 21(9); 2127–37. ©2015 AACR.


Cell Death and Disease | 2014

Cellular and Kaposi's sarcoma-associated herpes virus microRNAs in sepsis and surgical trauma.

Stefan Tudor; Dana Elena Giza; Heather Lin; Linda Fabris; K. Yoshiaki; Lucilla D'Abundo; K. M. Toale; Masayoshi Shimizu; Manuela Ferracin; Kishore B. Challagundla; M. Angelica Cortez; Enrique Fuentes-Mattei; D. Tulbure; C. Gonzalez; J. Henderson; M. Row; T. W. Rice; Cristina Ivan; Massimo Negrini; Muller Fabbri; J. S. Morris; Sai Ching Jim Yeung; Catalin Vasilescu; George Calin

Once a patient is in septic shock, survival rates drop by 7.6% for every hour of delay in antibiotic therapy. Biomarkers based on the molecular mechanism of sepsis are important for timely diagnosis and triage. Here, we study the potential roles of a panel of cellular and viral miRNAs as sepsis biomarkers. We performed genome-wide microRNA (miRNA) expression profiling in leukocytes from septic patients and nonseptic controls, combined with quantitative RT-PCR in plasmas from two cohorts of septic patients, two cohorts of nonseptic surgical patients and healthy volunteers. Enzyme-linked immunosorbent assay, miRNA transfection and chromatin immunoprecipitation were used to study the effects of Kaposi sarcoma herpes virus (KSHV) miRNAs on interleukins secretion. Differences related to sepsis etiology were noted for plasma levels of 10 cellular and 2 KSHV miRNAs (miR-K-10b and miR-K-12-12*) between septic and nonseptic patients. All the sepsis groups had high KSHV miRNAs levels compared with controls; Afro-American patients had higher levels of KSHV-miR-K12-12* than non-Afro-American patients. Both KSHV miRNAs were increased on postoperative day 1, but returned to baseline on day 7; they acted as direct agonists of Toll-like receptor 8 (TLR8), which might explain the increased secretion of the IL-6 and IL-10. Cellular and KSHV miRNAs are differentially expressed in sepsis and early postsurgical patients and may be exploited for diagnostic and therapeutic purposes. Increased miR-K-10b and miR-K12-12* are functionally involved in sepsis as agonists of TLR8, forming a positive feedback that may lead to cytokine dysregulation.

Collaboration


Dive into the Enrique Fuentes-Mattei's collaboration.

Top Co-Authors

Avatar

Cristina Ivan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Guermarie Velazquez-Torres

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cristian Rodriguez-Aguayo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

George A. Calin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Liem Phan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mong Hong Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Anil K. Sood

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriel Lopez-Berestein

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sai Ching Jim Yeung

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jian Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge