Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guermarie Velazquez-Torres is active.

Publication


Featured researches published by Guermarie Velazquez-Torres.


Nature Cell Biology | 2015

Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis

Einav Shoshan; Aaron K. Mobley; Russell R. Braeuer; Takafumi Kamiya; Li Huang; Mayra Vasquez; Ahmad Salameh; Ho Jeong Lee; Sun Jin Kim; Cristina Ivan; Guermarie Velazquez-Torres; Ka Ming Nip; Kelsey Zhu; Denise Brooks; Steven J.M. Jones; Inanc Birol; Maribel Mosqueda; Yu Ye Wen; Agda Karina Eterovic; Anil K. Sood; Patrick Hwu; Jeffrey E. Gershenwald; A. Gordon Robertson; George A. Calin; Gal Markel; Isaiah J. Fidler; Menashe Bar-Eli

Although recent studies have shown that adenosine-to-inosine (A-to-I) RNA editing occurs in microRNAs (miRNAs), its effects on tumour growth and metastasis are not well understood. We present evidence of CREB-mediated low expression of ADAR1 in metastatic melanoma cell lines and tumour specimens. Re-expression of ADAR1 resulted in the suppression of melanoma growth and metastasis inxa0vivo. Consequently, we identified three miRNAs undergoing A-to-I editing in the weakly metastatic melanoma but not in strongly metastatic cell lines. One of these miRNAs, miR-455-5p, has two A-to-I RNA-editing sites. The biological function of edited miR-455-5p is different from that of the unedited form, as it recognizes a different set of genes. Indeed, wild-type miR-455-5p promotes melanoma metastasis through inhibition of the tumour suppressor gene CPEB1. Moreover, wild-type miR-455 enhances melanoma growth and metastasis inxa0vivo, whereas the edited form inhibits these features. These results demonstrate a previously unrecognized role for RNA editing in melanoma progression.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Aurora B kinase phosphorylates and instigates degradation of p53

Chris Gully; Guermarie Velazquez-Torres; Ji Hyun Shin; Enrique Fuentes-Mattei; Edward Wang; Colin Carlock; Jian Chen; Daniel Rothenberg; Henry P. Adams; Hyun Ho Choi; Sergei Guma; Liem Phan; Ping Chieh Chou; Chun Hui Su; Fanmao Zhang; Jiun Sheng Chen; Tsung Ying Yang; Sai Ching J. Yeung; Mong Hong Lee

Aurora B is a mitotic checkpoint kinase that plays a pivotal role in the cell cycle, ensuring correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in many types of human cancers, which has made it an attractive target for cancer therapies. Tumor suppressor p53 is a genome guardian and important negative regulator of the cell cycle. Whether Aurora B and p53 are coordinately regulated during the cell cycle is not known. We report that Aurora B directly interacts with p53 at different subcellular localizations and during different phases of the cell cycle (for instance, at the nucleus in interphase and the centromeres in prometaphase of mitosis). We show that Aurora B phosphorylates p53 at S183, T211, and S215 to accelerate the degradation of p53 through the polyubiquitination–proteasome pathway, thus functionally suppressing the expression of p53 target genes involved in cell cycle inhibition and apoptosis (e.g., p21 and PUMA). Pharmacologic inhibition of Aurora B in cancer cells with WT p53 increased p53 protein level and expression of p53 target genes to inhibit tumor growth. Together, these results define a mechanism of p53 inactivation during the cell cycle and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise the tumor suppressor function of p53. We have elucidated the antineoplastic mechanism for Aurora B kinase inhibitors in cancer cells with WT p53.


Journal of Cellular and Molecular Medicine | 2011

The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth

Yin Hsun Feng; Guermarie Velazquez-Torres; Christopher Gully; Jian Chen; Mong Hong Lee; Sai Ching Jim Yeung

Despite investigations into mechanisms linking type 2 diabetes and cancer, there is a gap in knowledge about pharmacotherapy for diabetes in cancer patients. Epidemiological studies have shown that diabetic cancer patients on different antidiabetic treatments have different survival. The clinically relevant question is whether some antidiabetic pharmacotherapeutic agents promote cancer whereas others inhibit cancer progression. We investigated the hypothesis that various antidiabetic drugs had differential direct impact on cancer cells using four human cell lines (pancreatic cancer: MiaPaCa2, Panc‐1; breast cancer: MCF7, HER18). We found that insulin and glucose promoted cancer cell proliferation and contributed to chemoresistance. Metformin and rosiglitazone suppressed cancer cell growth and induced apoptosis. Both drugs affected signalling in the protein kinases B (AKT)/mammalian target of rapamycin pathway; metformin activated adenosine monophosphate (AMP)‐activated protein kinase whereas rosiglitazone increased chromosome ten level. Although high insulin and glucose concentrations promoted chemoresistance, the combination of metformin or rosiglitazone with gemcitabine or doxorubicin, resulted in an additional decrease in live cancer cells and increase in apoptosis. In contrast, exenatide did not have direct effect on cancer cells. In conclusion, different types of antidiabetic pharmacotherapy had a differential direct impact on cancer cells. This study provides experimental evidence to support further investigation of metformin and rosiglitazone as first‐line therapies for type 2 diabetes in cancer patients.


Journal of the National Cancer Institute | 2014

Effects of Obesity on Transcriptomic Changes and Cancer Hallmarks in Estrogen Receptor–Positive Breast Cancer

Enrique Fuentes-Mattei; Guermarie Velazquez-Torres; Liem Phan; Fanmao Zhang; Ping Chieh Chou; Ji Hyun Shin; Hyun Ho Choi; Jiun Sheng Chen; Ruiying Zhao; Jian Chen; Chris Gully; Colin Carlock; Yuan Qi; Ya Zhang; Yun Wu; Francisco J. Esteva; Yongde Luo; Wallace L. McKeehan; Joe Ensor; Gabriel N. Hortobagyi; Lajos Pusztai; W. Fraser Symmans; Mong Hong Lee; Sai Ching Jim Yeung

Background Obesity increases the risk of cancer death among postmenopausal women with estrogen receptor–positive (ER+) breast cancer, but the direct evidence for the mechanisms is lacking. The purpose of this study is to demonstrate direct evidence for the mechanisms mediating this epidemiologic phenomenon. Methods We analyzed transcriptomic profiles of pretreatment biopsies from a prospective cohort of 137 ER+ breast cancer patients. We generated transgenic (MMTV-TGFα;A y /a) and orthotopic/syngeneic (A y /a) obese mouse models to investigate the effect of obesity on tumorigenesis and tumor progression and to determine biological mechanisms using whole-genome transcriptome microarrays and protein analyses. We used a coculture system to examine the impact of adipocytes/adipokines on breast cancer cell proliferation. All statistical tests were two-sided. Results Functional transcriptomic analysis of patients revealed the association of obesity with 59 biological functional changes (P < .05) linked to cancer hallmarks. Gene enrichment analysis revealed enrichment of AKT-target genes (P = .04) and epithelial–mesenchymal transition genes (P = .03) in patients. Our obese mouse models demonstrated activation of the AKT/mTOR pathway in obesity-accelerated mammary tumor growth (3.7- to 7.0-fold; P < .001; n = 6–7 mice per group). Metformin or everolimus can suppress obesity-induced secretion of adipokines and breast tumor formation and growth (0.5-fold, P = .04; 0.3-fold, P < .001, respectively; n = 6–8 mice per group). The coculture model revealed that adipocyte-secreted adipokines (eg, TIMP-1) regulate adipocyte-induced breast cancer cell proliferation and invasion. Metformin suppress adipocyte-induced cell proliferation and adipocyte-secreted adipokines in vitro. Conclusions Adipokine secretion and AKT/mTOR activation play important roles in obesity-accelerated breast cancer aggressiveness in addition to hyperinsulinemia, estrogen signaling, and inflammation. Metformin and everolimus have potential for therapeutic interventions of ER+ breast cancer patients with obesity.


Molecular Cancer | 2010

Nuclear export regulation of COP1 by 14-3-3σ in response to DNA damage

Chun Hui Su; Ruiying Zhao; Guermarie Velazquez-Torres; Jian Chen; Christopher Gully; Sai Ching J. Yeung; Mong Hong Lee

Mammalian constitutive photomorphogenic 1 (COP1) is a p53 E3 ubiquitin ligase involved in regulating p53 protein level. In plants, the dynamic cytoplasm/nucleus distribution of COP1 is important for its function in terms of catalyzing the degradation of target proteins. In mammalian cells, the biological consequence of cytoplasmic distribution of COP1 is not well characterized. Here, we show that DNA damage leads to the redistribution of COP1 to the cytoplasm and that 14-3-3σ, a p53 target gene product, controls COP1 subcellular localization. Investigation of the underlying mechanism suggests that COP1 S387 phosphorylation is required for COP1 to bind 14-3-3σ. Significantly, upon DNA damage, 14-3-3σ binds to phosphorylated COP1 at S387, resulting in COP1s accumulation in the cytoplasm. Cytoplasmic COP1 localization leads to its enhanced ubiquitination. We also show that N-terminal 14-3-3σ interacts with COP1 and promotes COP1 nuclear export through its NES sequence. Further, we show that COP1 is important in causing p53 nuclear exclusion. Finally, we demonstrate that 14-3-3σ targets COP1 for nuclear export, thereby preventing COP1-mediated p53 nuclear export. Together, these results define a novel, detailed mechanism for the subcellular localization and regulation of COP1 after DNA damage and provide a mechanistic explanation for the notion that 14-3-3σs impact on the inhibition of p53 E3 ligases is an important step for p53 stabilization after DNA damage.


Oncogene | 2011

COP9 signalosome subunit 6 stabilizes COP1, which functions as an E3 ubiquitin ligase for 14-3-3σ.

Hyun Ho Choi; Christopher Gully; Chun-Hui Su; Guermarie Velazquez-Torres; Ping-Chieh Chou; Chieh Tseng; Ruiying Zhao; Liem Phan; T. Shaiken; Jiun Sheng Chen; Sai Ching J. Yeung; Mong Hong Lee

14-3-3σ, a gene upregulated by p53 in response to DNA damage, exists as part of a positive-feedback loop, which activates p53 and is a human cancer epithelial marker downregulated in various cancer types. 14-3-3σ levels are critical for maintaining p53 activity in response to DNA damage and regulating signal mediators such as Akt. In this study, we identify mammalian constitutive photomorphogenic 1 (COP1) as a novel E3 ubiquitin ligase for targeting 14-3-3σ through proteasomal degradation. We show for the first time that COP9 signalosome subunit 6 (CSN6) associates with COP1 and is involved in 14-3-3σ ubiquitin-mediated degradation. Mechanistic studies show that CSN6 expression leads to stabilization of COP1 through reducing COP1 self-ubiquitination and decelerating COP1s turnover rate. We also show that CSN6-mediated 14-3-3σ ubiquitination is compromised when COP1 is knocked down. Thus, CSN6 mediates 14-3-3σ ubiquitination through enhancing COP1 stability. Subsequently, we show that CSN6 causes 14-3-3σ downregulation, thereby activating Akt and promoting cell survival. Also, CSN6 overexpression leads to increased cell growth, transformation and promotes tumorigenicity. Significantly, 14-3-3σ expression can correct the abnormalities mediated by CSN6 expression. These data suggest that the CSN6-COP1 axis is involved in 14-3-3σ degradation, and that deregulation of this axis will promote cell growth and tumorigenicity.


Nature Communications | 2015

The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming

Liem Phan; Ping Chieh Chou; Guermarie Velazquez-Torres; Ismael Samudio; Kenneth Parreno; Yaling Huang; Chieh Tseng; Thuy Vu; Chris Gully; Chun Hui Su; Edward Wang; Jian Chen; Hyun Ho Choi; Enrique Fuentes-Mattei; Ji-Hyun Shin; Christine Y. Shiang; Brian C. Grabiner; Marzenna Blonska; Stephen Skerl; Yiping Shao; Dianna Cody; Jorge Delacerda; Charles Kingsley; Douglas Webb; Colin Carlock; Zhongguo Zhou; Yun Chih Hsieh; Jae-Hyuk Lee; Andrew M. Elliott; Marc S. Ramirez

Summary Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumourigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programs by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anti-cancer metabolism therapy development in future.


Nature Communications | 2014

CSN6 drives carcinogenesis by positively regulating Myc stability

Jian Chen; Ji Hyun Shin; Ruiying Zhao; Liem Phan; Hua Wang; Yuwen Xue; Sean M. Post; Hyun Ho Choi; Jiun Sheng Chen; Edward Wang; Zhongguo Zhou; Chieh Tseng; Christopher Gully; Guermarie Velazquez-Torres; Enrique Fuentes-Mattei; Giselle Yeung; Yi Qiao; Ping Chieh Chou; Chun Hui Su; Yun Chih Hsieh; Shih Lan Hsu; Kazufumi Ohshiro; Tattym Shaikenov; Huamin Wang; Sai Ching Jim Yeung; Mong Hong Lee

Summary Cullin-RING ubiquitin ligases (CRL) are critical in ubiquitinating Myc, while COP9 signalosome (CSN) controls neddylation of Cullin in CRL. The mechanistic link between Cullin neddylation and Myc ubiquitination/degradation is unclear. Here we show that Myc is a target of the CSN subunit 6 (CSN6)–Cullin signaling axis and that CSN6 is a positive regulator of Myc. CSN6 enhanced neddylation of Cullin-1 and facilitated auto-ubiquitination/degradation of Fbxw7, a component of CRL involved in Myc ubiquitination, thereby stabilizing Myc. Csn6 haplo-insufficiency decreased Cullin-1 neddylation but increased Fbxw7 stability to compromise Myc stability and activity in an Eµ-Myc mouse model, resulting in decelerated lymphomagenesis. We found that CSN6 overexpression, which leads to aberrant expression of Myc target genes, is frequent in human cancers. Together, these results define a mechanism for the regulation of Myc stability through the CSN-Cullin-Fbxw7 axis and provide insights into the correlation of CSN6 overexpression with Myc stabilization/activation during tumorigenesis.


Cell Cycle | 2012

FBXW7 is involved in Aurora B degradation

Chieh Lin Teng; Yun Chi Hsieh; Liem Phan; Ji-Hyun Shin; Chris Gully; Guermarie Velazquez-Torres; Stephen Skerl; Sai Ching J. Yeung; Shih Lan Hsu; Mong Hong Lee

FBXW7, a component of E3 ubiquitin ligase, plays an important role in mitotic checkpoint, but its role remains unclear. Aurora B is a mitotic checkpoint kinase that plays a pivotal role in mitosis by ensuring correct chromosome segregation and normal progression through mitosis. Whether Aurora B and FBXW7 are coordinately regulated during mitosis is not known. Here, we show that FBXW7 is a negative regulator for Aurora B. Ectopic expression of FBXW7 can suppress the expression of Aurora B. Accordingly, FBXW7 deficiency leads to Aurora B elevation. Mechanistic studies show that all FBXW7 isoforms are negative regulators of Aurora B expression through ubiquitination-mediated protein degradation. Aurora B interacts with R465 and R505 residues of WD 40 domain of FBXW7. Significantly, inverse correlation between FBXW7 and Aurora B elevation is translated into the deregulation of mitosis. FBWX7 expression mitigates Aurora B-mediated cell growth and mitotic deregulation. In addition, FBXW7 reduces the percentage of multinucleated cells caused by Aurora B overexpression. These data suggest that FBXW7 is an important negative regulator of Aurora B, and that the loss or mutation of FBXW7 as seen in many types of cancer could lead to an abnormal elevation of Aurora B and result in deregulated mitosis, which accelerates cancer cell growth.


Clinical Cancer Research | 2015

Rac1/Pak1/p38/MMP-2 Axis Regulates Angiogenesis in Ovarian Cancer

Vianey Gonzalez-Villasana; Enrique Fuentes-Mattei; Cristina Ivan; Heather J. Dalton; Cristian Rodriguez-Aguayo; Ricardo J. Fernandez-de Thomas; Paloma Monroig; Guermarie Velazquez-Torres; Rebecca A. Previs; Sunila Pradeep; Nermin Kahraman; Huamin Wang; Pinar Kanlikilicer; Bulent Ozpolat; George A. Calin; Anil K. Sood; Gabriel Lopez-Berestein

Purpose: Zoledronic acid is being increasingly recognized for its antitumor properties, but the underlying functions are not well understood. In this study, we hypothesized that zoledronic acid inhibits ovarian cancer angiogenesis preventing Rac1 activation. Experimental Design: The biologic effects of zoledronic acid were examined using a series of in vitro [cell invasion, cytokine production, Rac1 activation, reverse-phase protein array, and in vivo (orthotopic mouse models)] experiments. Results: There was significant inhibition of ovarian cancer (HeyA8-MDR and OVCAR-5) cell invasion as well as reduced production of proangiogenic cytokines in response to zoledronic acid treatment. Furthermore, zoledronic acid inactivated Rac1 and decreased the levels of Pak1/p38/matrix metalloproteinase-2 in ovarian cancer cells. In vivo, zoledronic acid reduced tumor growth, angiogenesis, and cell proliferation and inactivated Rac1 in both HeyA8-MDR and OVCAR-5 models. These in vivo antitumor effects were enhanced in both models when zoledronic acid was combined with nab-paclitaxel. Conclusions: Zoledronic acid has robust antitumor and antiangiogenic activity and merits further clinical development as ovarian cancer treatment. Clin Cancer Res; 21(9); 2127–37. ©2015 AACR.

Collaboration


Dive into the Guermarie Velazquez-Torres's collaboration.

Top Co-Authors

Avatar

Enrique Fuentes-Mattei

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Liem Phan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mong Hong Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jian Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ruiying Zhao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chris Gully

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Christopher Gully

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chun Hui Su

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cristina Ivan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Einav Shoshan

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge