Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Enrique Marco de Lucas.
Brain Structure & Function | 2013
Juan Martino; Philip C. De Witt Hamer; Mitchel S. Berger; Michael T. Lawton; Christine M. Arnold; Enrique Marco de Lucas; Hugues Duffau
The anatomy of the perisylvian component of the superior longitudinal fasciculus (SLF) has recently been reviewed by numerous diffusion tensor imaging tractography (DTI) studies. However, little is known about the exact cortical terminations of this tract. The aim of the present work is to isolate the different subcomponents of this tract with fiber dissection and DTI tractography, and to identify the exact cortical connections. Twelve postmortem human hemispheres (6 right and 6 left) were dissected using the cortex-sparing fiber dissection. In addition, three healthy brains were analyzed using DTI-based tractography software. The different components of the perisylvian SLF were isolated and the fibers were followed until the cortical terminations. Three segments of the perisylvian SLF were identified: (1) anterior segment, connecting the supramarginal gyrus and superior temporal gyrus with the precentral gyrus, (2) posterior segment, connecting the posterior portion of the middle temporal gyrus with the angular gyrus, and (3) long segment of the arcuate fasciculus that connects the middle and inferior temporal gyri with the precentral gyrus and posterior portion of the inferior and middle frontal gyri. In the present study, three different components of the perisylvian SLF were identified. For the first time, our dissections revealed that each component was connected to a specific cortical area within the frontal, parietal and temporal lobes. By accurately depicting not only the trajectory but also cortical connections of this bundle, it is possible to develop new insights into the putative functional role of this tract.
Journal of Anatomy | 2011
Juan Martino; Philip C. De Witt Hamer; Francesco Vergani; Christian Brogna; Enrique Marco de Lucas; Alfonso Vazquez-Barquero; Juan A. García-Porrero; Hugues Duffau
Classical fiber dissection of post mortem human brains enables us to isolate a fiber tract by removing the cortex and overlying white matter. In the current work, a modification of the dissection methodology is presented that preserves the cortex and the relationships within the brain during all stages of dissection, i.e. ‘cortex‐sparing fiber dissection’. Thirty post mortem human hemispheres (15 right side and 15 left side) were dissected using cortex‐sparing fiber dissection. Magnetic resonance imaging study of a healthy brain was analyzed using diffusion tensor imaging (DTI)‐based tractography software. DTI fiber tract reconstructions were compared with cortex‐sparing fiber dissection results. The fibers of the superior longitudinal fasciculus (SLF), inferior fronto‐occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) were isolated so as to enable identification of their cortical terminations. Two segments of the SLF were identified: first, an indirect and superficial component composed of a horizontal and vertical segment; and second, a direct and deep component or arcuate fasciculus. The IFOF runs within the insula, temporal stem and sagittal stratum, and connects the frontal operculum with the occipital, parietal and temporo‐basal cortex. The UF crosses the limen insulae and connects the orbito‐frontal gyri with the anterior temporal lobe. Finally, a portion of the ILF was isolated connecting the fusiform gyrus with the occipital gyri. These results indicate that cortex‐sparing fiber dissection facilitates study of the 3D anatomy of human brain tracts, enabling the tracing of fibers to their terminations in the cortex. Consequently, it is an important tool for neurosurgical training and neuroanatomical research.
Clinical Anatomy | 2014
Juan Martino; Enrique Marco de Lucas
Precise knowledge of the connectivities of the different white matter bundles is of great value for neuroscience research. Our knowledge of subcortical anatomy has improved exponentially during recent decades owing to the development of magnetic resonance diffusion tensor imaging tractography (DTI). Although DTI tractography has led to important progress in understanding white matter anatomy, the precise trajectory and cortical connections of the subcortical bundles remain poorly determined. The recent literature was extensively reviewed in order to analyze the trajectories and cortical terminations of the lateral association fibers of the brain.The anatomy of the following tracts is reviewed: superior longitudinal fasciculus, middle longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto‐occipital fasciculus, uncinate fasciculus, frontal aslant tract, and vertical occipital fasciculus. The functional role of a tract can be inferred from its topography within the brain. Knowing the functional roles of the cortical areas connected by a certain bundle, it is possible to develop new insights into the putative functional properties of such connections. Clin. Anat. 563–569, 2014.
Journal of Neurosurgery | 2012
Juan Martino; Enrique Marco de Lucas; Francisco Javier Ibáñez-Plágaro; José Manuel Valle-Folgueral; Alfonso Vázquez-Barquero
Foix-Chavany-Marie syndrome (FCMS) is a rare type of suprabulbar palsy characterized by an automatic-voluntary dissociation of the orofacial musculature. Here, the authors report an original case of FCMS that occurred intraoperatively while resecting the pars opercularis of the inferior frontal gyrus. This 25-year-old right-handed man with an incidentally diagnosed right frontotemporoinsular tumor underwent surgery using an asleep-awake-asleep technique with direct cortical and subcortical electrical stimulation and a transopercular approach to the insula. While resecting the anterior part of the pars opercularis the patient suffered sudden anarthria and bilateral facial weakness. He was unable to speak or show his teeth on command, but he was able to voluntarily move his upper and lower limbs. This syndrome lasted for 8 days. Postoperative diffusion tensor imaging tractography revealed that connections of the pars opercularis of the right inferior frontal gyrus with the frontal aslant tract (FAT) and arcuate fasciculus (AF) were damaged. This case supplies evidence for localizing the structural substrate of FCMS. It was possible, for the first time in the literature, to accurately correlate the occurrence of FCMS to the resection of connections between the FAT and AF, and the right pars opercularis of the inferior frontal gyrus. The FAT has been recently described, but it may be an important connection to mediate supplementary motor area control of orofacial movement. The present case also contributes to our knowledge of complication avoidance in operculoinsular surgery. A transopercular approach to insuloopercular gliomas can generate FCMS, especially in cases of previous contralateral lesions. The prognosis is favorable, but the patient should be informed of this particular hazard, and the surgeon should anticipate the surgical strategy in case the syndrome occurs intraoperatively in an awake patient.
Journal of Neurosurgery | 2015
Juan Martino; David Mato; Enrique Marco de Lucas; Juan A. García-Porrero; Andreu Gabarrós; Alejandro Fernández-Coello; Alfonso Vázquez-Barquero
OBJECT Little attention has been given to the functional challenges of the insular approach to the resection of gliomas, despite the potential damage of essential neural networks that underlie the insula. The object of this study is to analyze the subcortical anatomy of the insular region when infiltrated by gliomas, and compare it with the normal anatomy in nontumoral hemispheres. METHODS Ten postmortem human hemispheres were dissected, with isolation of the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus. Probabilistic diffusion tensor imaging (DTI) tractography was used to analyze the subcortical anatomy of the insular region in 10 healthy volunteers and in 22 patients with insular Grade II and Grade III gliomas. The subcortical anatomy of the insular region in these 22 insular gliomas was compared with the normal anatomy in 20 nontumoral hemispheres. RESULTS In tumoral hemispheres, the distances between the peri-insular sulci and the lateral surface of the IFOF and uncinate fasciculus were enlarged (p < 0.05). Also in tumoral hemispheres, the IFOF was identified in 10 (90.9%) of 11 patients with an extent of resection less than 80%, and in 4 (36.4%) of 11 patients with an extent of resection equal to or greater than 80% (multivariate analysis: p = 0.03). CONCLUSIONS Insular gliomas grow in the space between the lateral surface of the IFOF and uncinate fasciculus and the insular surface, displacing and compressing the tracts medially. Moreover, these tracts may be completely infiltrated by the tumor, with a total disruption of the bundles. In the current study, the identification of the IFOF with DTI tractography was significantly associated with the extent of tumor resection. If the IFOF is not identified preoperatively, there is a high probability of achieving a resection greater than 80%.
Neurocirugia | 2014
Carlos Bucheli; David Mato; Enrique Marco de Lucas; Juan A. García-Porrero; Alfonso Vázquez-Barquero; Juan Martino
INTRODUCTION The insula is a highly connected area, as an intricate network of afferent and efferent projections connect it with adjacent and distant cortical regions. OBJECTIVE To perform an extensive review of recent literature to analyse the anatomy of the associative tracts related to the insula. RESULTS The frontal aslant tract, arcuate fasciculus, horizontal portion of the superior longitudinal fasciculus and the middle longitudinal fasciculus are associative tracts connected to the opercula. The inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus run under the anterior and inferior portion of the insula. CONCLUSIONS the pars triangularis and orbicularis of the inferior frontal gyrus, as well as the middle and anterior part of the superior temporal gyrus, have few connections with the perisylvian associative network. Consequently, in the trans-opercular approach to the insula, these 2 regions represent anatomical corridors that give access to the insula. The IFOF and the uncinate fasciculus represent the deep functional margin of resection.
World Neurosurgery | 2017
Juan Martino; Carlos Velásquez; Javier Vázquez-Bourgon; Enrique Marco de Lucas; Elsa Gómez
BACKGROUND Modern sign languages used by deaf people are fully expressive, natural human languages that are perceived visually and produced manually. The literature contains little data concerning human brain organization in conditions of deficient sensory information such as deafness. CASE DESCRIPTION A deaf-mute patient underwent surgery of a left temporoinsular low-grade glioma. The patient underwent awake surgery with intraoperative electrical stimulation mapping, allowing direct study of the cortical and subcortical organization of sign language. We found a similar distribution of language sites to what has been reported in mapping studies of patients with oral language, including 1) speech perception areas inducing anomias and alexias close to the auditory cortex (at the posterior portion of the superior temporal gyrus and supramarginal gyrus); 2) speech production areas inducing speech arrest (anarthria) at the ventral premotor cortex, close to the lip motor area and away from the hand motor area; and 3) subcortical stimulation-induced semantic paraphasias at the inferior fronto-occipital fasciculus at the temporal isthmus. CONCLUSIONS The intraoperative setup for sign language mapping with intraoperative electrical stimulation in deaf-mute patients is similar to the setup described in patients with oral language. To elucidate the type of language errors, a sign language interpreter in close interaction with the neuropsychologist is necessary. Sign language is perceived visually and produced manually; however, this case revealed a cross-modal recruitment of auditory and orofacial motor areas.
Medicina Clinica | 2012
David Suárez-Fernández; Alfonso Vázquez-Barquero; Elsa Gómez; Enrique Marco de Lucas; Luis Ángel Lopez; David Mato; Rubén Martín-Láez; Roberto Ocon; Juan Martino
Neurocirugia | 2012
Juan Martino; Elsa Gómez; Enrique Marco de Lucas; Marian Martínez; Roberto Ocon; José Manuel Valle-Folgueral; Marco Vega; Alfonso Vázquez-Barquero
Neurocirugia | 2012
Juan Martino; Elsa Gómez; Almudena García-Castaño; Enrique Marco de Lucas; Sergio Maldonado; Rubén Martín-Láez; Iñigo Pomposo-Gaztelu; Alfonso Vázquez-Barquero