Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrique Sánchez-Molano is active.

Publication


Featured researches published by Enrique Sánchez-Molano.


BMC Genomics | 2011

Detection of growth-related QTL in turbot (Scophthalmus maximus)

Enrique Sánchez-Molano; Alex Cerna; Miguel A. Toro; Carmen Bouza; Miguel Hermida; Belén G. Pardo; Santiago Cabaleiro; Jesús Fernández; Paulino Martínez

BackgroundThe turbot (Scophthalmus maximus) is a highly appreciated European aquaculture species. Growth related traits constitute the main goal of the ongoing genetic breeding programs of this species. The recent construction of a consensus linkage map in this species has allowed the selection of a panel of 100 homogeneously distributed markers covering the 26 linkage groups (LG) suitable for QTL search. In this study we addressed the detection of QTL with effect on body weight, length and Fultons condition factor.ResultsEight families from two genetic breeding programs comprising 814 individuals were used to search for growth related QTL using the panel of microsatellites available for QTL screening. Two different approaches, maximum likelihood and regression interval mapping, were used in order to search for QTL. Up to eleven significant QTL were detected with both methods in at least one family: four for weight on LGs 5, 14, 15 and 16; five for length on LGs 5, 6, 12, 14 and 15; and two for Fultons condition factor on LGs 3 and 16. In these LGs an association analysis was performed to ascertain the microsatellite marker with the highest apparent effect on the trait, in order to test the possibility of using them for marker assisted selection.ConclusionsThe use of regression interval mapping and maximum likelihood methods for QTL detection provided consistent results in many cases, although the high variation observed for traits mean among families made it difficult to evaluate QTL effects. Finer mapping of detected QTL, looking for tightly linked markers to the causative mutation, and comparative genomics are suggested to deepen in the analysis of QTL in turbot so they can be applied in marker assisted selection programs.


Journal of Animal Breeding and Genetics | 2014

Assessing the impact of genomic selection against hip dysplasia in the Labrador Retriever dog.

Enrique Sánchez-Molano; John Woolliams; Sarah Blott; Pamela Wiener

Many purebred dogs exhibit a higher prevalence of inherited diseases compared with non-purebred dogs. One of the most popular breeds in the UK is the Labrador Retriever, which has a high prevalence of hip dysplasia resulting in high costs for surgical operations and impaired animal welfare. Considering the many complications of highly managed populations, mainly due to breeders conventions and the resulting population structure, is of great importance for the proper development of a strategy against the disease. In this study, we have compared the utilities and performances of both genomic and phenotypic selection against hip dysplasia in a simulated population with the characteristics of the British Veterinary Association and Kennel Club (BVA/KC) hip dysplasia scheme. The results confirm the potential benefits of genomic selection by showing a moderate increase of 1.15-fold (assuming a realistic accuracy of r2 = 0.5) in response to selection due to the higher accuracy (between 0.96- and 1.32-fold, considering 0.35 ≤ r2 ≤ 0.7) and more than a threefold increase when all the offspring in each litter are tested (between 3.25- and 4.55-fold, again considering 0.35 ≤ r2 ≤ 0.7).


BMC Genomics | 2014

Quantitative trait loci mapping for canine hip dysplasia and its related traits in UK Labrador Retrievers

Enrique Sánchez-Molano; John Woolliams; Ricardo Pong-Wong; Dylan Clements; Sarah Blott; Pamela Wiener

BackgroundCanine hip dysplasia (CHD) is characterised by a malformation of the hip joint, leading to osteoarthritis and lameness. Current breeding schemes against CHD have resulted in measurable but moderate responses. The application of marker-assisted selection, incorporating specific markers associated with the disease, or genomic selection, incorporating genome-wide markers, has the potential to dramatically improve results of breeding schemes. Our aims were to identify regions associated with hip dysplasia or its related traits using genome and chromosome-wide analysis, study the linkage disequilibrium (LD) in these regions and provide plausible gene candidates. This study is focused on the UK Labrador Retriever population, which has a high prevalence of the disease and participates in a recording program led by the British Veterinary Association (BVA) and The Kennel Club (KC).ResultsTwo genome-wide and several chromosome-wide QTLs affecting CHD and its related traits were identified, indicating regions related to hip dysplasia.ConclusionConsistent with previous studies, the genetic architecture of CHD appears to be based on many genes with small or moderate effect, suggesting that genomic selection rather than marker-assisted selection may be an appropriate strategy for reducing this disease.


Frontiers in Genetics | 2015

Genomic prediction of traits related to canine hip dysplasia

Enrique Sánchez-Molano; Ricardo Pong-Wong; Dylan Clements; Sarah Blott; Pamela Wiener; John Woolliams

Increased concern for the welfare of pedigree dogs has led to development of selection programs against inherited diseases. An example is canine hip dysplasia (CHD), which has a moderate heritability and a high prevalence in some large-sized breeds. To date, selection using phenotypes has led to only modest improvement, and alternative strategies such as genomic selection (GS) may prove more effective. The primary aims of this study were to compare the performance of pedigree- and genomic-based breeding against CHD in the UK Labrador retriever population and to evaluate the performance of different GS methods. A sample of 1179 Labrador Retrievers evaluated for CHD according to the UK scoring method (hip score, HS) was genotyped with the Illumina CanineHD BeadChip. Twelve functions of HS and its component traits were analyzed using different statistical methods (GBLUP, Bayes C and Single-Step methods), and results were compared with a pedigree-based approach (BLUP) using cross-validation. Genomic methods resulted in similar or higher accuracies than pedigree-based methods with training sets of 944 individuals for all but the untransformed HS, suggesting that GS is an effective strategy. GBLUP and Bayes C gave similar prediction accuracies for HS and related traits, indicating a polygenic architecture. This conclusion was also supported by the low accuracies obtained in additional GBLUP analyses performed using only the SNPs with highest test statistics, also indicating that marker-assisted selection (MAS) would not be as effective as GS. A Single-Step method that combines genomic and pedigree information also showed higher accuracy than GBLUP and Bayes C for the log-transformed HS, which is currently used for pedigree based evaluations in UK. In conclusion, GS is a promising alternative to pedigree-based selection against CHD, requiring more phenotypes with genomic data to improve further the accuracy of prediction.


BMC Genomics | 2017

Genomic data illuminates demography, genetic structure and selection of a popular dog breed

Pamela Wiener; Enrique Sánchez-Molano; Dylan N. Clements; John Woolliams; Marie J. Haskell; Sarah Blott

BackgroundGenomic methods have proved to be important tools in the analysis of genetic diversity across the range of species and can be used to reveal processes underlying both short- and long-term evolutionary change. This study applied genomic methods to investigate population structure and inbreeding in a common UK dog breed, the Labrador Retriever.ResultsWe found substantial within-breed genetic differentiation, which was associated with the role of the dog (i.e. working, pet, show) and also with coat colour (i.e. black, yellow, brown). There was little evidence of geographical differentiation. Highly differentiated genomic regions contained genes and markers associated with skull shape, suggesting that at least some of the differentiation is related to human-imposed selection on this trait. We also found that the total length of homozygous segments (runs of homozygosity, ROHs) was highly correlated with inbreeding coefficient.ConclusionsThis study demonstrates that high-density genomic data can be used to quantify genetic diversity and to decipher demographic and selection processes. Analysis of genetically differentiated regions in the UK Labrador Retriever population suggests the possibility of human-imposed selection on craniofacial characteristics. The high correlation between estimates of inbreeding from genomic and pedigree data for this breed demonstrates that genomic approaches can be used to quantify inbreeding levels in dogs, which will be particularly useful where pedigree information is missing.


Genetics | 2017

Genetic characterization of dog personality traits

Joanna J. Ilska; Marie J. Haskell; Sarah Blott; Enrique Sánchez-Molano; Zita Polgár; Sarah E. Lofgren; Dylan N. Clements; Pamela Wiener

The genetic architecture of behavioral traits in dogs is of great interest to owners, breeders, and professionals involved in animal welfare, as well as to scientists studying the genetics of animal (including human) behavior. The genetic component of dog behavior is supported by between-breed differences and some evidence of within-breed variation. However, it is a challenge to gather sufficiently large datasets to dissect the genetic basis of complex traits such as behavior, which are both time-consuming and logistically difficult to measure, and known to be influenced by nongenetic factors. In this study, we exploited the knowledge that owners have of their dogs to generate a large dataset of personality traits in Labrador Retrievers. While accounting for key environmental factors, we demonstrate that genetic variance can be detected for dog personality traits assessed using questionnaire data. We identified substantial genetic variance for several traits, including fetching tendency and fear of loud noises, while other traits revealed negligibly small heritabilities. Genetic correlations were also estimated between traits; however, due to fairly large SEs, only a handful of trait pairs yielded statistically significant estimates. Genomic analyses indicated that these traits are mainly polygenic, such that individual genomic regions have small effects, and suggested chromosomal associations for six of the traits. The polygenic nature of these traits is consistent with previous behavioral genetics studies in other species, for example in mouse, and confirms that large datasets are required to quantify the genetic variance and to identify the individual genes that influence behavioral traits.


Frontiers in Genetics | 2016

Genomic-Based Optimum Contribution in Conservation and Genetic Improvement Programs with Antagonistic Fitness and Productivity Traits

Enrique Sánchez-Molano; Ricardo Pong-Wong; Georgios Banos

Animal selection for genetic improvement of productivity may lead to an increase in inbreeding through the use of techniques that enhance the reproductive capability of selected animals. Therefore, breeding strategies aim to balance maintaining genetic variability and acceptable fitness levels with increasing productivity. The present study demonstrates the effectiveness of genomic-based optimum contribution strategies at addressing this objective when fitness and productivity are genetically antagonistic traits. Strategies are evaluated in directional selection (increasing productivity) or conservation (maintaining fitness) scenarios. In the former case, substantial rates of genetic gain can be achieved while greatly constraining the rate of increase in inbreeding. Under a conservation approach, inbreeding depression can be effectively halted while also achieving a modest rate of genetic gain for productivity. Furthermore, the use of optimum contribution strategies when combined with a simple non-random mating scheme (minimum kinship method) showed an additional delay in the increase of inbreeding in the short term. In conclusion, genomic-based optimum contribution methods can be effectively used to control inbreeding and inbreeding depression, and still allow genetic gain for productivity traits even when fitness and productivity are antagonistically correlated.


BMC Genetics | 2016

A practical approach to detect ancestral haplotypes in livestock populations

Enrique Sánchez-Molano; Dimitrios Tsiokos; D. Chatziplis; Hossein Jorjani; Lorenzo Degano; Clara Diaz; Attilio Rossoni; Hermann Schwarzenbacher; Franz R. Seefried; L. Varona; Daniele Vicario; Ezequiel L. Nicolazzi; Georgios Banos

BackgroundThe effects of different evolutionary forces are expected to lead to the conservation, over many generations, of particular genomic regions (haplotypes) due to the development of linkage disequilibrium (LD). The detection and identification of early (ancestral) haplotypes can be used to clarify the evolutionary dynamics of different populations as well as identify selection signatures and genomic regions of interest to be used both in conservation and breeding programs. The aims of this study were to develop a simple procedure to identify ancestral haplotypes segregating across several generations both within and between populations with genetic links based on whole-genome scanning. This procedure was tested with simulated and then applied to real data from different genotyped populations of Spanish, Fleckvieh, Simmental and Brown-Swiss cattle.ResultsThe identification of ancestral haplotypes has shown coincident patterns of selection across different breeds, allowing the detection of common regions of interest on different bovine chromosomes and mirroring the evolutionary dynamics of the studied populations. These regions, mainly located on chromosomes BTA5, BTA6, BTA7 and BTA21 are related with certain animal traits such as coat colour and milk protein and fat content.ConclusionIn agreement with previous studies, the detection of ancestral haplotypes provides useful information for the development and comparison of breeding and conservation programs both through the identification of selection signatures and other regions of interest, and as indicator of the general genetic status of the populations.


Scientific Reports | 2018

Association of plasma microRNA expression with age, genetic background and functional traits in dairy cattle

Jason Ioannidis; Enrique Sánchez-Molano; Androniki Psifidi; F. Xavier Donadeu; Georgios Banos

A number of blood circulating microRNAs (miRNAs) are proven disease biomarkers and have been associated with ageing and longevity in multiple species. However, the role of circulating miRNAs in livestock species has not been fully studied. We hypothesise that plasma miRNA expression profiles are affected by age and genetic background, and associated with health and production traits in dairy cattle. Using PCR arrays, we assessed 306 plasma miRNAs for effects of age (calves vs mature cows) and genetic background (control vs select lines) in 18 animals. We identified miRNAs which were significantly affected by age (26 miRNAs) and genetic line (5 miRNAs). Using RT-qPCR in a larger cow population (n = 73) we successfully validated array data for 12 age-related miRNAs, one genetic line-related miRNA, and utilised expression data to associate their levels in circulation with functional traits in these animals. Plasma miRNA levels were associated with telomere length (ageing/longevity indicator), milk production and composition, milk somatic cell count (mastitis indicator), fertility, lameness, and blood metabolites linked with body energy balance and metabolic stress. In conclusion, circulating miRNAs could provide useful selection markers for dairy cows to help improve health, welfare and production performance.


Frontiers in Veterinary Science | 2018

Impact of genetic selection for increased cattle resistance to bovine tuberculosis on disease transmission dynamics

Kethusegile Raphaka; Enrique Sánchez-Molano; Smaragda Tsairidou; Osvaldo Anacleto; Elizabeth Glass; John Woolliams; Andrea Doeschl-Wilson; Georgios Banos

Bovine tuberculosis (bTB) poses a challenge to animal health and welfare worldwide. Presence of genetic variation in host resistance to Mycobacterium bovis infection makes the trait amenable to improvement with genetic selection. Genetic evaluations for resistance to infection in dairy cattle are currently available in the United Kingdom (UK), enabling genetic selection of more resistant animals. However, the extent to which genetic selection could contribute to bTB eradication is unknown. The objective of this study was to quantify the impact of genetic selection for bTB resistance on cattle-to-cattle disease transmission dynamics and prevalence by developing a stochastic genetic epidemiological model. The model was used to implement genetic selection in a simulated cattle population. The model considered various levels of selection intensity over 20 generations assuming genetic heterogeneity in host resistance to infection. Our model attempted to represent the dairy cattle population structure and current bTB control strategies in the UK, and was informed by genetic and epidemiological parameters inferred from data collected from UK bTB infected dairy herds. The risk of a bTB breakdown was modeled as the percentage of herds where initially infected cows (index cases) generated secondary cases by infecting herd-mates. The model predicted that this risk would be reduced by half after 4, 6, 9, and 15 generations for selection intensities corresponding to genetic selection of the 10, 25, 50, and 70% most resistant sires, respectively. In herds undergoing bTB breakdowns, genetic selection reduced the severity of breakdowns over generations by reducing both the percentage of secondary cases and the duration over which new secondary cases were detected. Selection of the 10, 25, 50, and 70% most resistant sires reduced the percentage of secondary cases to <1% in 4, 5, 7, and 11 generations, respectively. Similarly, the proportion of long breakdowns (breakdowns in which secondary cases were detected for more than 365 days) was reduced by half in 2, 2, 3, and 4 generations, respectively. Collectively, results suggest that genetic selection could be a viable tool that can complement existing management and surveillance methods to control and ultimately eradicate bTB.

Collaboration


Dive into the Enrique Sánchez-Molano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Blott

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge