Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eoin J. O'Gorman is active.

Publication


Featured researches published by Eoin J. O'Gorman.


Advances in Ecological Research | 2012

Biodiversity, Species Interactions and Ecological Networks in a Fragmented World

Melanie Hagen; W. Daniel Kissling; Claus Rasmussen; Marcus A. M. de Aguiar; Lee E. Brown; Daniel W. Carstensen; Isabel Alves-dos-Santos; Yoko L. Dupont; Francois Edwards; Julieta Genini; Paulo R. Guimarães; Gareth B. Jenkins; Pedro Jordano; Christopher N. Kaiser-Bunbury; Mark E. Ledger; Kate P. Maia; Flavia Maria Darcie Marquitti; Órla B. McLaughlin; L. Patrícia C. Morellato; Eoin J. O'Gorman; Kristian Trøjelsgaard; Jason M. Tylianakis; Mariana Morais Vidal; Guy Woodward; Jens M. Olesen

Biodiversity is organised into complex ecological networks of interacting species in local ecosystems, but our knowledge about the effects of habitat fragmentation on such systems remains limited. We consider the effects of this key driver of both local and global change on both mutualistic and antagonistic systems at different levels of biological organisation and spatiotemporal scales. There is a complex interplay of patterns and processes related to the variation and influence of spatial, temporal and biotic drivers in ecological networks. Species traits (e.g. body size, dispersal ability) play an important role in determining how networks respond to fragment size and isolation, edge shape and permeability, and the quality of the surrounding landscape matrix. Furthermore, the perception of spatial scale (e.g. environmental grain) and temporal effects (time lags, extinction debts) can differ markedly among species, network modules and trophic levels, highlighting the need to develop a more integrated perspective that considers not just nodes, but the structural role and strength of species interactions (e.g. as hubs, spatial couplers and determinants of connectance, nestedness and modularity) in response to habitat fragmentation. Many challenges remain for improving our understanding: the likely importance of specialisation, functional redundancy and trait matching has been largely overlooked. The potentially critical effects of apex consumers, abundant species and super-generalists on network changes and evolutionary dynamics also need to be addressed in future research. Ultimately, spatial and ecological networks need to be combined to explore the effects of dispersal, colonisation, extinction and habitat fragmentation on network structure and coevolutionary dynamics. Finally, we need to embed network approaches more explicitly within applied ecology in general, because they offer great potential for improving on the current species-based or habitat-centric approaches to our management and conservation of biodiversity in the face of environmental change.


Advances in Ecological Research | 2010

Ecological Networks in a Changing Climate

Guy Woodward; Jonathan P. Benstead; Oliver S. Beveridge; Julia L. Blanchard; Thomas Brey; Lee E. Brown; Wyatt F. Cross; Nikolai Friberg; Thomas C. Ings; Ute Jacob; Simon Jennings; Mark E. Ledger; Alexander M. Milner; José M. Montoya; Eoin J. O'Gorman; Jens M. Olesen; Owen L. Petchey; Doris E. Pichler; Daniel C. Reuman; Murray S. A. Thompson; F. J. Frank van Veen; Gabriel Yvon-Durocher

Summary Attempts to gauge the biological impacts of climate change have typically focussed on the lower levels of organization (individuals to populations), rather than considering more complex multi-species systems, such as entire ecological networks (food webs, mutualistic and host–parasitoid networks). We evaluate the possibility that a few principal drivers underpin network-level responses to climate change, and that these drivers can be studied to develop a more coherent theoretical framework than is currently provided by phenomenological approaches. For instance, warming will elevate individual ectotherm metabolic rates, and direct and indirect effects of changes in atmospheric conditions are expected to alter the stoichiometry of interactions between primary consumers and basal resources; these effects are general and pervasive, and will permeate through the entire networks that they affect. In addition, changes in the density and viscosity of aqueous media could alter interactions among very small organisms and disrupt the pycnoclines that currently compartmentalize many aquatic networks in time and space. We identify a range of approaches and potential model systems that are particularly well suited to network-level studies within the context of climate change. We also highlight potentially fruitful areas of research with a view to improving our predictive power regarding climate change impacts on networks. We focus throughout on mechanistic approaches rooted in first principles that demonstrate potential for application across a wide range of taxa and systems.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Perturbations to trophic interactions and the stability of complex food webs.

Eoin J. O'Gorman; Mark Emmerson

The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system.


Advances in Ecological Research | 2012

Impacts of Warming on the Structure and Functioning of Aquatic Communities : Individual-to Ecosystem-Level Responses

Eoin J. O'Gorman; Doris E. Pichler; Georgina Adams; Jonathan P. Benstead; Haley Cohen; Nicola Craig; Wyatt F. Cross; Benoît O. L. Demars; Nikolai Friberg; Gísli Már Gíslason; Rakel Gudmundsdottir; Adrianna Hawczak; James M. Hood; Lawrence N. Hudson; Liselotte Johansson; Magnus Johansson; James R. Junker; Anssi Laurila; J. Russell Manson; Efpraxia Mavromati; Daniel Nelson; Jón S. Ólafsson; Daniel M. Perkins; Owen L. Petchey; Marco Plebani; Daniel C. Reuman; Bjoern C. Rall; Rebecca Stewart; Murray S. A. Thompson; Guy Woodward

Environmental warming is predicted to rise dramatically over the next century, yet few studies have investigated its effects in natural, multi-species systems. We present data collated over an 8-year period from a catchment of geothermally heated streams in Iceland, which acts as a natural experiment on the effects of warming across different organisational levels and spatiotemporal scales. Body sizes and population biomasses of individual species responded strongly to temperature, with some providing evidence to support temperature size rules. Macroinvertebrate and meiofaunal community composition also changed dramatically across the thermal gradient. Interactions within the warm streams in particular were characterised by food chains linking algae to snails to the apex predator, brown trout These chains were missing from the colder systems, where snails were replaced by much smaller herbivores and invertebrate omnivores were the top predators. Trout were also subsidised by terrestrial invertebrate prey, which could have an effect analogous to apparent competition within the aquatic prey assemblage. Top-down effects by snails on diatoms were stronger in the warmer streams, which could account for a shallowing of mass-abundance slopes across the community. This may indicate reduced energy transfer efficiency from resources to consumers in the warmer systems and/or a change in predator-prey mass ratios. All the ecosystem process rates investigated increased with temperature, but with differing thermal sensitivities, with important implications for overall ecosystem functioning (e.g. creating potential imbalances in elemental fluxes). Ecosystem respiration rose rapidly with temperature, leading to increased heterotrophy. There were also indications that food web stability may be lower in the warmer streams.


Advances in Ecological Research | 2010

From Broadstone to Zackenberg: Space, time and hierarchies in ecological networks

Jens M. Olesen; Yoko L. Dupont; Eoin J. O'Gorman; Thomas C. Ings; Katrin Layer; Carlos J. Melián; Kristian Trøjelsgaard; Doris E. Pichler; Claus Rasmussen; Guy Woodward

Summary Ecological networks are typically complex constructions of species and their interactions. During the last decade, the study of networks has moved from static to dynamic analyses, and has attained a deeper insight into their internal structure, heterogeneity, and temporal and spatial resolution. Here, we review, discuss and suggest research lines in the study of the spatio-temporal heterogeneity of networks and their hierarchical nature. We use case study data from two well-characterized model systems (the food web in Broadstone Stream in England and the pollination network at Zackenberg in Greenland), which are complemented with additional information from other studies. We focus upon eight topics: temporal dynamic space-for-time substitutions linkage constraints habitat borders network modularity individual-based networks invasions of networks and super networks that integrate different network types. Few studies have explicitly examined temporal change in networks, and we present examples that span from daily to decadal change: a common pattern that we see is a stable core surrounded by a group of dynamic, peripheral species, which, in pollinator networks enter the web via preferential linkage to the most generalist species. To some extent, temporal and spatial scales are interchangeable (i.e. networks exhibit ‘ergodicity’) and we explore how space-for-time substitutions can be used in the study of networks. Network structure is commonly constrained by phenological uncoupling (a temporal phenomenon), abundance, body size and population structure. Some potential links are never observed, that is they are ‘forbidden’ (fully constrained) or ‘missing’ (a sampling effect), and their absence can be just as ecologically significant as their presence. Spatial habitat borders can add heterogeneity to network structure, but their importance has rarely been studied: we explore how habitat generalization can be related to other resource dimensions. Many networks are hierarchically structured, with modules forming the basic building blocks, which can result in self-similarity. Scaling down from networks of species reveals another, finer-grained level of individual-based organization, the ecological consequences of which have yet to be fully explored. The few studies of individual-based ecological networks that are available suggest the potential for large intraspecific variance and, in the case of food webs, strong size-structuring. However, such data are still scarce and more studies are required to link individual-level and species-level networks. Invasions by alien species can be tracked by following the topological ‘career’ of the invader as it establishes itself within a network, with potentially important implications for conservation biology. Finally, by scaling up to a higher level of organization, it is possible to combine different network types (e.g. food webs and mutualistic networks) to form super networks, and this new approach has yet to be integrated into mainstream ecological research. We conclude by listing a set of research topics that we see as emerging candidates for ecological network studies in the near future.


Advances in Ecological Research | 2010

From Broadstone to Zackenberg

Jens M. Olesen; Yoko L. Dupont; Eoin J. O'Gorman; Thomas C. Ings; Katrin Layer; Carlos Javier Melian Penate; Kristian Trøjelsgaard; Doris E. Pichler; Claus Rasmussen; Guy Woodward

Summary Ecological networks are typically complex constructions of species and their interactions. During the last decade, the study of networks has moved from static to dynamic analyses, and has attained a deeper insight into their internal structure, heterogeneity, and temporal and spatial resolution. Here, we review, discuss and suggest research lines in the study of the spatio-temporal heterogeneity of networks and their hierarchical nature. We use case study data from two well-characterized model systems (the food web in Broadstone Stream in England and the pollination network at Zackenberg in Greenland), which are complemented with additional information from other studies. We focus upon eight topics: temporal dynamic space-for-time substitutions linkage constraints habitat borders network modularity individual-based networks invasions of networks and super networks that integrate different network types. Few studies have explicitly examined temporal change in networks, and we present examples that span from daily to decadal change: a common pattern that we see is a stable core surrounded by a group of dynamic, peripheral species, which, in pollinator networks enter the web via preferential linkage to the most generalist species. To some extent, temporal and spatial scales are interchangeable (i.e. networks exhibit ‘ergodicity’) and we explore how space-for-time substitutions can be used in the study of networks. Network structure is commonly constrained by phenological uncoupling (a temporal phenomenon), abundance, body size and population structure. Some potential links are never observed, that is they are ‘forbidden’ (fully constrained) or ‘missing’ (a sampling effect), and their absence can be just as ecologically significant as their presence. Spatial habitat borders can add heterogeneity to network structure, but their importance has rarely been studied: we explore how habitat generalization can be related to other resource dimensions. Many networks are hierarchically structured, with modules forming the basic building blocks, which can result in self-similarity. Scaling down from networks of species reveals another, finer-grained level of individual-based organization, the ecological consequences of which have yet to be fully explored. The few studies of individual-based ecological networks that are available suggest the potential for large intraspecific variance and, in the case of food webs, strong size-structuring. However, such data are still scarce and more studies are required to link individual-level and species-level networks. Invasions by alien species can be tracked by following the topological ‘career’ of the invader as it establishes itself within a network, with potentially important implications for conservation biology. Finally, by scaling up to a higher level of organization, it is possible to combine different network types (e.g. food webs and mutualistic networks) to form super networks, and this new approach has yet to be integrated into mainstream ecological research. We conclude by listing a set of research topics that we see as emerging candidates for ecological network studies in the near future.


Journal of Animal Ecology | 2010

Interaction strength, food web topology and the relative importance of species in food webs.

Eoin J. O'Gorman; Ute Jacob; Tomas Jonsson; Mark Emmerson

1. We established complex marine communities, consisting of over 100 species, in large subtidal experimental mesocosms. We measured the strength of direct interactions and the net strength of direct and indirect interactions between the species in those communities, using a combination of theoretical and empirical approaches. 2. Theoretical predictions of interaction strength were derived from the interaction coefficient matrix, which was parameterised using allometric predator-prey relationships. Empirical estimates of interaction strength were quantified using the ln-ratio, which measures the change in biomass density of species A in the presence and absence of species B. 3. We observed that highly connected species tend to have weak direct effects and net effects in our experimental food webs, whether we calculate interaction strength theoretically or empirically. 4. We found a significant correlation between our theoretical predictions and empirical estimates of direct effects and net effects. The net effects correlation was much stronger, indicating that our experimental communities were dominated by a mixture of direct and indirect effects. 5. Re-calculation of the theoretical predictions of net effects after randomising predator and prey body masses did not affect the negative relationship with connectance. 6. These results suggest that food web topology, which in this system is constrained by body mass, is overwhelmingly important for the magnitude of direct and indirect interactions and hence species importance in the face of biodiversity declines.


Philosophical Transactions of the Royal Society B | 2012

Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem

Malte Jochum; Florian D. Schneider; Tasman P. Crowe; Ulrich Brose; Eoin J. O'Gorman

Climate change has complex structural impacts on coastal ecosystems. Global warming is linked to a widespread decline in body size, whereas increased flood frequency can amplify nutrient enrichment through enhanced run-off. Altered population body-size structure represents a disruption in top-down control, whereas eutrophication embodies a change in bottom-up forcing. These processes are typically studied in isolation and little is known about their potential interactive effects. Here, we present the results of an in situ experiment examining the combined effects of top-down and bottom-up forces on the structure of a coastal marine community. Reduced average body mass of the top predator (the shore crab, Carcinus maenas) and nutrient enrichment combined additively to alter mean community body mass. Nutrient enrichment increased species richness and overall density of organisms. Reduced top-predator body mass increased community biomass. Additionally, we found evidence for an allometrically induced trophic cascade. Here, the reduction in top-predator body mass enabled greater biomass of intermediate fish predators within the mesocosms. This, in turn, suppressed key micrograzers, which led to an overall increase in microalgal biomass. This response highlights the possibility for climate-induced trophic cascades, driven by altered size structure of populations, rather than species extinction.


Ecology | 2012

Multiple anthropogenic stressors and the structural properties of food webs

Eoin J. O'Gorman; Jayne E. Fitch; Tasman P. Crowe

Coastal environments are among the most productive on the planet, providing a wide range of ecosystem services. Development and exploitation mean that they are faced with stresses from a number of anthropogenic sources. Such stresses are typically studied in isolation, but multiple stressors can combine in unexpected ways to alter the structure of ecological systems. Here, we experimentally explore the impacts of inorganic nutrients and organic matter on a range of food web properties. We find that these two stressors combine additively to produce significant increases in connectance and mean food chain length. Such increases are typically associated with enhanced robustness to secondary extinctions and productivity, respectively. Despite these apparent beneficial effects, we find a simplification of web structure in terms of taxon richness and diversity, and altered proportions of basal and top species. These effects are driven by a reduction in community assembly and lower consistency in a range of system properties as a result of the multiple stressors. Consequently, impacted food webs are likely to be more vulnerable to human- or climate-induced perturbations in the long-term.


Global Change Biology | 2014

Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia

Eoin J. O'Gorman; Jonathan P. Benstead; Wyatt F. Cross; Nikolai Friberg; James M. Hood; Philip W. Johnson; Bjarni D. Sigurdsson; Guy Woodward

Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small-scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small-scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming.

Collaboration


Dive into the Eoin J. O'Gorman's collaboration.

Top Co-Authors

Avatar

Guy Woodward

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Doris E. Pichler

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Mark Emmerson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Ute Jacob

University of Hamburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolai Friberg

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Órla B. McLaughlin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge