Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eonju Oh is active.

Publication


Featured researches published by Eonju Oh.


PLOS ONE | 2013

Oncolytic adenovirus expressing IL-23 and p35 elicits IFN-γ- and TNF-α-co-producing T cell-mediated antitumor immunity.

Il-Kyu Choi; Yan-Yan Li; Eonju Oh; Jaesung Kim; Chae-Ok Yun

Cytokine immunogene therapy is a promising strategy for cancer treatment. Interleukin (IL)-12 boosts potent antitumor immunity by inducing T helper 1 cell differentiation and stimulating cytotoxic T lymphocyte and natural killer cell cytotoxicity. IL-23 has been proposed to have similar but not overlapping functions with IL-12 in inducing Th1 cell differentiation and antitumor immunity. However, the therapeutic effects of intratumoral co-expression of IL-12 and IL-23 in a cancer model have yet to be investigated. Therefore, we investigated for the first time an effective cancer immunogene therapy of syngeneic tumors via intratumoral inoculation of oncolytic adenovirus co-expressing IL-23 and p35, RdB/IL23/p35. Intratumoral administration of RdB/IL23/p35 elicited strong antitumor effects and increased survival in a murine B16-F10 syngeneic tumor model. The levels of IL-12, IL-23, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were elevated in RdB/IL23/p35-treated tumors. Moreover, the proportion of regulatory T cells was markedly decreased in mice treated with RdB/IL23/p35. Consistent with these data, mice injected with RdB/IL23/p35 showed massive infiltration of CD4+ and CD8+ T cells into the tumor as well as enhanced induction of tumor-specific immunity. Importantly, therapeutic mechanism of antitumor immunity mediated by RdB/IL23/p35 is associated with the generation and recruitment of IFN-γ- and TNF-α-co-producing T cells in tumor microenvironment. These results provide a new insight into therapeutic mechanisms of IL-12 plus IL-23 and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity.


Molecular Cancer Therapeutics | 2014

Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K.

Ran Gao; Navjot Shah; Jung-Sun Lee; Shashank Prakash Katiyar; Ling Li; Eonju Oh; Durai Sundar; Chae-Ok Yun; Renu Wadhwa; Sunil C. Kaul

Ashwagandha is an important herb used in the Indian system of traditional home medicine, Ayurveda. Alcoholic extract (i-Extract) from its leaves and its component, withanone, were previously shown to possess anticancer activity. In the present study, we developed a combination of withanone and withaferin A, major withanolides in the i-Extract, that retained the selective cancer cell killing activity and found that it also has significant antimigratory, -invasive, and -angiogenic activities, in both in vitro and in vivo assays. Using bioinformatics and biochemical approaches, we demonstrate that these phytochemicals caused downregulation of migration-promoting proteins hnRNP-K, VEGF, and metalloproteases and hence are candidate natural drugs for metastatic cancer therapy. Mol Cancer Ther; 13(12); 2930–40. ©2014 AACR.


Journal of Controlled Release | 2015

Potent antitumor effect of neurotensin receptor-targeted oncolytic adenovirus co-expressing decorin and Wnt antagonist in an orthotopic pancreatic tumor model

Youjin Na; Joung Woo Choi; Dayananda Kasala; Jinwoo Hong; Eonju Oh; Yan Li; Soo Jung Jung; Sung Wan Kim; Chae-Ok Yun

Pancreatic cancer is highly aggressive, malignant, and notoriously difficult to cure using conventional cancer therapies. These conventional therapies have significant limitations due to excessive extracellular matrix (ECM) of pancreatic cancer and poor cancer specificity. The excess ECM prevents infiltration of drugs into the inner layer of the solid tumor. Therefore, novel treatment modalities that can specifically target the tumor and degrade the ECM are required for effective therapy. In the present study, we used ECM-degrading and Wnt signal-disrupting oncolytic adenovirus (oAd/DCN/LRP) to achieve a desirable therapeutic outcome against pancreatic cancer. In addition, to overcome the limitations in systemic delivery of oncolytic Ad (oAd) and to specifically target pancreatic cancer, neurotensin peptide (NT)-conjugated polyethylene glycol (PEG) was chemically crosslinked to the surface of Ad, generating a systemically injectable hybrid system, oAd/DCN/LRP-PEG-NT. We tested the targeting and therapeutic efficacy of oAd/DCN/LRP-PEG-NT toward neurotensin receptor 1 (NTR)-overexpressing pancreatic cancer cells, both in vitro and in vivo. The oAd/DCN/LRP-PEG-NT elicited increased NTR-selective cancer cell killing and transduction efficiency when compared with a cognate control lacking NT (oAd/DCN/LRP-PEG). Furthermore, systemic administration of oAd/DCN/LRP-PEG-NT significantly decreased induction of innate and adaptive immune responses against Ad, and blood retention time was markedly prolonged by PEGylation. Moreover, NTR-targeting oAd elicited greater in vivo tumor growth suppression when compared with naked oAd and 9.5 × 10(6)-fold increased tumor-to-liver ratio. This significantly enhanced antitumor effect of oAd/DCN/LRP-PEG-NT was mediated by active viral replication and viral spreading, which was facilitated by ECM degradation and inhibition of Wnt signaling-related factors (Wnt, β-catenin, and/or vimentin) in the tumor tissues. Taken together, these results demonstrate that oAd/DCN/LRP-PEG-NT has strong therapeutic potential for systemic treatment of NTR-overexpressing pancreatic cancer due to its NTR-targeting ability, enhanced therapeutic efficacy, and safety.


Oncotarget | 2017

Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model

Eonju Oh; Il-Kyu Choi; Jinwoo Hong; Chae-Ok Yun

Interleukin (IL)-12 is a potent antitumor cytokine. However, immunosuppressive tumor microenvironments containing transforming growth factor-β (TGF-β) attenuate cytokine-mediated antitumor immune responses. To enhance the efficacy of IL-12-mediated cancer immunotherapy, decorin (DCN) was explored as an adjuvant for overcoming TGF-β-mediated immunosuppression. We designed and generated a novel oncolytic adenovirus (Ad) coexpressing IL-12 and DCN (RdB/IL12/DCN). RdB/IL12/DCN-treated tumors showed significantly greater levels of interferon (IFN)-γ, tumor necrosis factor-α, monocyte chemoattractant protein-1, and IFN-γ-secreting immune cells than tumors treated with cognate control oncolytic Ad expressing a single therapeutic gene (RdB/DCN or RdB/IL12). Moreover, RdB/IL12/DCN attenuated intratumoral TGF-β expression, which positively correlated with reduction of Treg cells in draining lymph nodes and tumor tissues. Furthermore, tumor tissue treated with RdB/IL12/DCN showed increases infiltration of CD8+ T cells and proficient viral spreading within tumor tissues. These results demonstrated that an oncolytic Ad co-expressing IL-12 and DCN induces a potent antitumor immune response via restoration of antitumor immune function in a weakly immunogenic murine 4T1 orthotopic breast cancer model. These findings provide new insights into the therapeutic mechanisms of IL-12 plus DCN, making it a promising cancer immunotherapeutic agent for overcoming tumor-induced immunosuppression.


Journal of Experimental & Clinical Cancer Research | 2016

Combined therapy with oncolytic adenoviruses encoding TRAIL and IL-12 genes markedly suppressed human hepatocellular carcinoma both in vitro and in an orthotopic transplanted mouse model

Adel Galal El-Shemi; Ahmad Mohammed Ashshi; Youjin Na; Yan Li; Mohammed Basalamah; Faisal A. Al-Allaf; Eonju Oh; Bo-Kyeong Jung; Chae-Ok Yun

BackgroundGene-based virotherapy mediated by oncolytic viruses is currently experiencing a renaissance in cancer therapy. However, relatively little attention has been given to the potentiality of dual gene virotherapy strategy as a novel therapeutic approach to mediate triplex anticancer combination effects, particularly if the two suitable genes are well chosen. Both tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interleukin-12 (IL-12) have been emerged as promising pharmacological candidates in cancer therapy; however, the combined efficacy of TRAIL and IL-12 genes for treatment of human hepatocellular carcinoma (HCC) remains to be determined.MethodsHerein, we investigated the therapeutic efficacy of concurrent therapy with two armed oncolytic adenoviruses encoding human TRAIL gene (Ad-ΔB/TRAIL) and IL-12 gene (Ad-ΔB/IL-12), respectively, on preclinical models of human HCC, and also elucidated the possible underlying mechanisms. The effects of Ad-ΔB/TRAIL+Ad-ΔB/IL-12 combination therapy were assessed both in vitro on Hep3B and HuH7 human HCC cell lines and in vivo on HCC-orthotopic model established in the livers of athymic nude mice by intrahepatic implantation of human Hep3B cells.ResultsCompared to therapy with non-armed control Ad-ΔB, combined therapy with Ad-ΔB/TRAIL+Ad-ΔB/IL-12 elicited profound anti-HCC killing effects on Hep3B and HuH7 cells and on the transplanted Hep3B-orthotopic model. Efficient viral replication and TRAIL and IL-12 expression were also confirmed in HCC cells and the harvested tumor tissues treated with this combination therapy. Mechanistically, co-therapy with Ad-ΔB/TRAIL+Ad-ΔB/IL-12 exhibited an enhanced effect on apoptosis promotion, activation of caspase-3 and-8, generation of anti-tumor immune response evidenced by upregulation of interferon gamma (IFN-γ) production and infiltration of natural killer-and antigen presenting cells, and remarkable repression of intratumor vascular endothelial growth factor (VEGF) and cluster of differentiation 31 (CD31) expression and tumor microvessel density.ConclusionsOverall, our data showed a favorable therapeutic effect of Ad-ΔB/TRAIL+Ad-ΔB/IL-12 combination therapy against human HCC, and may therefore constitute a promising and effective therapeutic strategy for treating human HCC. However, further studies are warranted for its reliable clinical translation.


Human Gene Therapy | 2012

Negative Regulation-Resistant p53 Variant Enhances Oncolytic Adenoviral Gene Therapy

Taeyoung Koo; Il-Kyu Choi; Min Jung Kim; Jung-Sun Lee; Eonju Oh; Jung Ho Kim; Chae-Ok Yun

Intact p53 function is essential for responsiveness to cancer therapy. However, p53 activity is attenuated by the proto-oncoprotein Mdm2, the adenovirus protein E1B 55kD, and the p53 C-terminal domain. To confer resistance to Mdm2, E1B 55kD, and C-terminal negative regulation, we generated a p53 variant (p53VPΔ30) by deleting the N-terminal and C-terminal regions of wild-type p53 and inserting the transcriptional activation domain of herpes simplex virus VP16 protein. The oncolytic adenovirus vector Ad-mΔ19 expressing p53VPΔ30 (Ad-mΔ19/p53VPΔ30) showed greater cytotoxicity than Ad-mΔ19 expressing wild-type p53 or other p53 variants in human cancer cell lines. We found that Ad-mΔ19/p53VPΔ30 induced apoptosis through accumulation of p53VPΔ30, regardless of endogenous p53 and Mdm2 status. Moreover, Ad-mΔ19/p53VPΔ30 showed a greater antitumor effect and increased survival rates of mice with U343 brain cancer xenografts that expressed wild-type p53 and high Mdm2 levels. To our knowledge, this is the first study reporting a p53 variant modified at the N terminus and C terminus that shows resistance to degradation by Mdm2 and E1B 55kD, as well as negative regulation by the p53 C terminus, without decreased trans-activation activity. Taken together, these results indicate that Ad-mΔ19/p53VPΔ30 shows potential for improving p53-mediated cancer gene therapy.


International Journal of Cancer | 2015

Potent and long-term antiangiogenic efficacy mediated by FP3-expressing oncolytic adenovirus

Il-Kyu Choi; Hyewon Shin; Eonju Oh; Ji Young Yoo; June Kyu Hwang; Kyungsub Shin; Dechao Yu; Chae-Ok Yun

Various ways to inhibit vascular endothelial growth factor (VEGF), a key facilitator in tumor angiogenesis, are being developed to treat cancer. The soluble VEGF decoy receptor (FP3), due to its high affinity to VEGF, is a highly effective and promising strategy to disrupt VEGF signaling pathway. Despite potential advantage and potent therapeutic efficacy, its employment has been limited by very poor in vivo pharmacokinetic properties. To address this challenge, we designed a novel oncolytic adenovirus (Ad) expressing FP3 (RdB/FP3). To demonstrate the VEGF‐specific nature of RdB/FP3, replication‐incompetent Ad expressing FP3 (dE1/FP3) was also generated. dE1/FP3 was highly effective in reducing VEGF expression and functionally elicited an antiangiogeneic effect. Furthermore, RdB/FP3 exhibited a potent antitumor effect compared with RdB or recombinant FP3. Consistent with these data, RdB/FP3 was shown to greatly decrease VEGF expression level and vessel density and increase apoptosis in both tumor endothelial and tumor cells, verifying potent suppressive effects of RdB/FP3 on VEGF‐mediated tumor angiogenesis in vivo. Importantly, the therapeutic mechanism of antitumor effect mediated by RdB/FP3 is associated with prolonged VEGF silencing efficacy and enhanced oncolysis via cancer cell‐specific replication of oncolytic Ad. Taken together, RdB/FP3 provides a new promising therapeutic approach in the treatment of cancer and angiogenesis‐related diseases.


Biomaterials | 2017

A hydrogel matrix prolongs persistence and promotes specific localization of an oncolytic adenovirus in a tumor by restricting nonspecific shedding and an antiviral immune response

Bo-Kyeong Jung; Eonju Oh; Jinwoo Hong; Yunki Lee; Ki Dong Park; Chae-Ok Yun

Currently, intratumoral injection of an oncolytic adenovirus (Ad) is the conventional administration route in clinical trials. Nonetheless, the locally administered Ad disseminates to the surrounding nontarget tissues and has short biological activity due to immunogenicity of Ad, thus necessitating multiple injections to achieve a sufficient therapeutic index. In the present study, a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-expressing oncolytic Ad (oAd-TRAIL) was encapsulated in a gelatin hydrogel (oAd-TRAIL/gel) to enhance and prolong antitumor efficacy of the virus after a single intratumoral injection. oAd-TRAIL/gel showed greater antitumor efficacy than naked oAd-TRAIL did due to enhanced and prolonged intratumoral accumulation of Ad up to a 20-day period, showing potent induction of apoptosis and inhibition of tumor cell proliferation. Furthermore, the gel system effectively prevented shedding of oncolytic Ad from the injection site to hepatic and other healthy tissues. oAd-TRAIL/gel treatment resulted in a markedly weaker antiviral immune response against Ad relative to naked oAd-TRAIL, further contributing to prolonged persistence of the oncolytic Ad in tumor tissue. Moreover, the hydrogel matrix preserved oAd-TRAILs ability to induce an antitumor immune response, resulting in higher intratumoral infiltration by CD4+/CD8+ T cells. Taken together, these findings show that single intratumoral administration of the Ad/hydrogel modality may prolong and potentiate the therapeutic efficacy of Ad, modulate the immune reaction in favor of the virotherapy, and enhance intratumoral localization of the virus, ultimately overcoming limitations of oncolytic virotherapy revealed in recent clinical trials.


Journal of Controlled Release | 2017

Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy

Eonju Oh; Jung Eun Oh; Jin Woo Hong; Yoon Ho Chung; Yunki Lee; Ki Dong Park; Sungwan Kim; Chae-Ok Yun

ABSTRACT Administration of dendritic cells (DCs) combined with oncolytic adenovirus (Ad) expressing antitumor cytokines induces a potent antitumor effect and antitumor immunity by ameliorating the immunosuppressive tumor microenvironment. However, this combination therapy has significant limitations due to rapid dissemination and inactivation of the therapeutics at the tumor site, necessitating multiple injections of both therapeutics. To overcome these limitations, we have utilized gelatin‐based hydrogel to co‐deliver oncolytic Ad co‐expressing interleukin (IL)‐12 and granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) (oAd) and DCs for sustained release of both therapeutics. The injectable and biodegradable hydrogels were prepared by mixing the polymer solutions containing horseradish peroxidase and hydrogen peroxide. Gel matrix enabled sustained release of both oAd and DCs while preserving their biological activity over a considerable time period, leading to efficient retention of both therapeutics in tumor tissue. Further, tumors treated with oAd‐ and DC‐loaded gel (oAd + DC/gel) showed a significantly greater expression level of IL‐12, GM‐CSF, and interferon‐&ggr; (IFN‐&ggr;) than either single treatment (oAd or DC) or oAd in combination with DC (oAd + DC), resulting in efficient activation of both endogenous and exogenous DCs, migration of DCs to draining lymph nodes, and tumor infiltration of CD4+ and CD8+ T cells. Moreover, oAd + DC/gel resulted in a significantly higher number of tumor‐specific IFN‐&ggr;–secreting immune cells compared with oAd + DC. Lastly, oAd + DC/gel significantly attenuated tumor‐mediated thymic atrophy, which is associated with immunosuppression in the tumor microenvironment, compared with oAd + DC. Taken together, these results demonstrate that gelatin gel‐mediated co‐delivery of oncolytic Ad and DCs might be a promising strategy to efficiently retain both therapeutics in tumor tissue and induce a potent antitumor immune response for an extended time period via a single administration.


Gene Therapy | 2018

Efficacy of combining ING4 and TRAIL genes in cancer-targeting gene virotherapy strategy: First evidence in preclinical hepatocellular carcinoma

A Galal El-Shemi; A Mohammed Ashshi; Eonju Oh; B-K Jung; Mohammed Basalamah; A Alsaegh; C-O Yun

Current treatments of hepatocellular carcinoma (HCC) are ineffective and unsatisfactory in many aspects. Cancer-targeting gene virotherapy using oncolytic adenoviruses (OAds) armed with anticancer genes has shown efficacy and safety in clinical trials. Nowadays, both inhibitor of growth 4 (ING4), as a multimodal tumor suppressor gene, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as a potent apoptosis-inducing gene, are experiencing a renaissance in cancer gene therapy. Herein we investigated the antitumor activity and safety of mono- and combined therapy with OAds armed with ING4 (Ad-ΔB/ING4) and TRAIL (Ad-ΔB/TRAIL) gene, respectively, on preclinical models of human HCC. OAd-mediated expression of ING4 or TRAIL transgene was confirmed. Ad-ΔB/TRAIL and/or Ad-ΔB/ING4 exhibited potent killing effect on human HCC cells (HuH7 and Hep3B) but not on normal liver cells. Most importantly, systemic therapy with Ad-ΔB/ING4 plus Ad-ΔB/TRAIL elicited more eradicative effect on an orthotopic mouse model of human HCC than their monotherapy, without causing obvious overlapping toxicity. Mechanistically, Ad-ΔB/ING4 and Ad-ΔB/TRAIL were remarkably cooperated to induce antitumor apoptosis and immune response, and to repress tumor angiogenesis. This is the first study showing that concomitant therapy with Ad-ΔB/ING4 and Ad-ΔB/TRAIL may provide a potential strategy for HCC therapy and merits further investigations to realize its possible clinical translation.

Collaboration


Dive into the Eonju Oh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge