Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chae-Ok Yun is active.

Publication


Featured researches published by Chae-Ok Yun.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability

Dai Fukumura; Takeshi Gohongi; Ananth Kadambi; Yotaro Izumi; Jennifer Ang; Chae-Ok Yun; Donald G. Buerk; Paul L. Huang; Rakesh K. Jain

Nitric oxide (NO) plays a critical role in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. However, the relative contribution of different NO synthase (NOS) isoforms to these processes is not known. Here, we evaluated the relative contributions of endothelial and inducible NOS (eNOS and iNOS, respectively) to angiogenesis and permeability of VEGF-induced angiogenic vessels. The contribution of eNOS was assessed by using an eNOS-deficient mouse, and iNOS contribution was assessed by using a selective inhibitor [l-N6-(1-iminoethyl) lysine, l-NIL] and an iNOS-deficient mouse. Angiogenesis was induced by VEGF in type I collagen gels placed in the mouse cranial window. Angiogenesis, vessel diameter, blood flow rate, and vascular permeability were proportional to NO levels measured with microelectrodes: Wild-type (WT) ≥ WT with l-NIL or iNOS−/− > eNOS−/− ≥ eNOS−/− with l-NIL. The role of NOS in VEGF-induced acute vascular permeability increase in quiescent vessels also was determined by using eNOS- and iNOS-deficient mice. VEGF superfusion significantly increased permeability in both WT and iNOS−/− mice but not in eNOS−/− mice. These findings suggest that eNOS plays a predominant role in VEGF-induced angiogenesis and vascular permeability. Thus, selective modulation of eNOS activity is a promising strategy for altering angiogenesis and vascular permeability in vivo.


Cancer Research | 2007

Silibinin Sensitizes Human Glioma Cells to TRAIL-Mediated Apoptosis via DR5 Up-regulation and Down-regulation of c-FLIP and Survivin

Yong-gyu Son; Eun Hee Kim; Jin Yeop Kim; Seung U. Kim; Taeg Kyu Kwon; A-Rum Yoon; Chae-Ok Yun; Kyeong Sook Choi

Silibinin, a flavonoid isolated from Silybum marianum, has been reported to have cancer chemopreventive and therapeutic effects. Here, we show that treatment with subtoxic doses of silibinin in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, but not in human astrocytes, suggesting that this combined treatment may offer an attractive strategy for safely treating gliomas. Although the proteolytic processing of procaspase-3 by TRAIL was partially blocked in glioma cells, cotreatment with silibinin efficiently recovered TRAIL-induced caspase activation in these cells. Silibinin treatment up-regulated DR5, a death receptor of TRAIL, in a transcription factor CHOP-dependent manner. Furthermore, treatment with silibinin down-regulated the protein levels of the antiapoptotic proteins FLIP(L), FLIP(S), and survivin through proteasome-mediated degradation. Taken together, our results show that the activity of silibinin to modulate multiple components in the death receptor-mediated apoptotic pathway is responsible for its ability to recover TRAIL sensitivity in TRAIL-resistant glioma cells.


Clinical Cancer Research | 2006

Enhanced Antitumor Effect of Oncolytic Adenovirus Expressing Interleukin-12 and B7-1 in an Immunocompetent Murine Model

Young Sook Lee; Joo Hang Kim; Kyung Ju Choi; Il-Kyu Choi; Hoguen Kim; Sungae Cho; Byoung Chul Cho; Chae-Ok Yun

Purpose: We investigated whether an armed viral platform, where lytic property of a viral infection is coupled to viral-mediated delivery of therapeutic genes, could increase the therapeutic potential of a viral-based therapy. Experimental Design: We generated interleukin (IL)-12-expressing oncolytic adenovirus (YKL-IL-12) and IL-12- and B7-1-expressing (YKL-IL12/B7) oncolytic adenovirus. Therapeutic efficacy of these newly engineered adenoviruses was then evaluated in vivo using an immunocompetent mouse bearing murine melanoma B16-F10 tumors. Overall survival was assessed with the Kaplan-Meier method. The induction of immune cell cytotoxicity was assessed by CTL assay, IFN-γ enzyme-linked immunospot assay, and immunohistochemical studies. Results: YKL-IL12/B7 oncolytic adenovirus, expressing both IL-12 and B7-1, showed a higher incidence of complete tumor regression compared with the analogous oncolytic adenovirus, YKL-1, or IL-12-expressing, YKL-IL12. Significant survival advantage was also seen in response to YKL-IL12/B7. Moreover, IL-12 and IFN-γ levels produced in tumors treated with YKL-IL12/B7 was significantly greater than those treated with YKL-IL12. The enhanced survival advantage was mediated by the induction of immune cell cytotoxicity. In agreement with these results, massive infiltration of CD4+ and CD8+ T cells into tissues surrounding the necrotic area of the tumor was observed following in situ delivery of YKL-IL12/B7. Conclusion: Combination of oncolysis and the enhancement of antitumor immune response by oncolytic adenovirus expressing both IL-12 and B7-1 elicits potent antitumor effect and survival advantage.


Human Gene Therapy | 2003

Ad-mTERT-Δ19, a Conditional Replication-Competent Adenovirus Driven by the Human Telomerase Promoter, Selectively Replicates in and Elicits Cytopathic Effect in a Cancer Cell-Specific Manner

Eunhee Kim; Joo Hang Kim; Ha Youn Shin; Hansaem Lee; Jai Myung Yang; Jung Ho Kim; Joo Hyuk Sohn; Hoguen Kim; Chae-Ok Yun

Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, functions to stabilize telomere length during chromosomal replication. Previous studies have shown that hTERT promoter is highly active in most tumor and immortal cell lines but inactive in normal somatic cell types. The use of wild-type hTERT promoter, however, may be limited by its inability to direct high level and cancer cell-specific expression necessary for effective targeted gene therapy. To improve cancer cell specificity and the strength of the hTERT promoter, a modified hTERT, m-hTERT promoter was generated in which additional copies of c-Myc and Sp1 binding sites were incorporated adjacent to the promoter. As assessed using relative lacZ expression, hTERT and m-hTERT promoter activity was significantly upregulated in cancer cells but not in normal cells, and within these upregulated cancer cells, m-hTERT promoter strength was substantially higher than that of the wild-type hTERT. Next, to restrict viral replication to tumor cells, a conditional replication-competent adenoviruses, Ad-TERT-Delta19 and Ad-mTERT-delta19 were generated in which the E1A gene, which is essential for viral replication, was placed under the control of the hTERT and m-hTERT promoter, respectively. While the wild-type Ad-TERT-delta19 replicated in and induced cytopathic effect in cancer and in some normal cell lines, Ad-mTERT-delta19 enhanced viral replication and cytopathic effect only in cancer cells. Furthermore, the growth of established human cervical carcinoma in nude mice was significantly suppressed by intratumoral injection of Ad-mTERT-delta19. Taken together, present results strongly suggest that the use of the m-hTERT promoter is not only useful in the regulation of therapeutic gene expression but also that replication-competent oncolytic adenovirus under the control of the m-hTERT promoter may be a new promising tool for the treatment of human malignancies.


Oncogene | 2005

Correlation of KIT and platelet-derived growth factor receptor |[alpha]| mutations with gene activation and expression profiles in gastrointestinal stromal tumors

Hyun Ju Kang; Suk Woo Nam; Hyunki Kim; Hwanseok Rhee; Nam Gyun Kim; Haeryoung Kim; Woo Jin Hyung; Sung Hoon Noh; Joo Hang Kim; Chae-Ok Yun; Edison T. Liu; Hoguen Kim

Activating mutations of KIT and platelet-derived growth factor receptor α (PDGFRA) are known to be alternative and mutually exclusive genetic events in the development of gastrointestinal stromal tumors (GISTs). We examined the effect of the mutations of these two genes on the gene expression profile of 22 GISTs using the oligonucleotide microarray. Mutations of KIT and PDGFRA were found in 17 cases and three cases, respectively. The remaining two cases had no detectable mutations in either gene. The mutation status of KIT and PDGFRA was directly related to the expression levels of activated KIT and PDGFRA, and was also related to the different expression levels of activated proteins that play key roles in the downstream of the receptor tyrosine kinase III family. To evaluate the impact of mutation status and the importance of the type of mutation in gene expression and clinical features, microarray-derived data from 22 GISTs were interpreted using a principal component analysis (PCA). Three relevant principal component representing mutation of KIT, PDGFRA and chromosome 14q deletion were identified from the interpretation of the oligonucleotide microarray data with PCA. After supervised analysis, there was at least a two fold difference in expression between GISTs with KIT and PDGFRA mutation in 70 genes. Our findings demonstrate that mutations of KIT and PDGFRA affect differential activation and expression of some genes, and can be used for the molecular classification of GISTs.


Gene Therapy | 2006

Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect

Kyung-Ju Choi; Joo Hang Kim; Young Sook Lee; Joo-Hang Kim; Beom-Seok Suh; H.R. Kim; Sungae Cho; Joo Hyuk Sohn; Gwi Eon Kim; Chae-Ok Yun

Oncolytic adenoviral vectors are currently being developed as biologic anticancer agents. Coupling the lytic function of an oncolytic adenovirus (Ad) with its ability as a transgene delivery system represents a powerful extension of this methodology. A clear advantage is the amplification of a therapeutic gene, as replicating vectors would be able to infect and deliver the gene of interest to neighboring cells. Granulocyte–macrophage colony-stimulating factor (GM-CSF) is one of the most potent stimulators of a specific and long-lasting antitumor immunity and its important role in the maturation of antigen-presenting cells to induce T-cell activation has been well documented. Similarly, the B7 family has also been shown to play an integral role in mediating an antitumor response. Most tumor cells, however, lack the expression of these costimulatory molecules on their surface, thus escaping immune system recognition. To increase the antitumor effect of an oncolytic Ad, we have generated an E1B 55 kDa-deleted oncolytic adenoviral vector, YKL-GB, that expresses both GM-CSF and B7-1. The therapeutic efficacy of YKL-GB Ad was evaluated in immunocompetent mice bearing murine melanoma B16-F10 tumors. Significant inhibition of tumor growth was seen in mice treated with YKL-GB compared to those treated with the analogous vector, YKL-1. Moreover, YKL-GB oncolytic Ad demonstrated enhanced antitumor activity and higher incidences of tumor regression compared to a replication-incompetent Ad, dl-GB, which coexpresses GM-CSF and B7-1. Localized GM-CSF and B7-1 gene transfer also conferred long-lasting immunity against a tumor re-challenge. To establish that the observed antitumor effect is associated with the generation of a tumor-specific immune response, we carried out interferon-γ enzyme-linked immune spot assay. We observed that YKL-GB induced significantly higher immune cell activation than YKL-1. Furthermore, immunohistochemical studies demonstrated robust dendritic cells and CD4+/CD8+ T-cell infiltration in these mice compared to the YKL-1-treated groups. In agreement with these results, splenocytes from tumor-bearing mice treated with YKL-GB expressed high levels of the costimulatory and activation molecules. These findings demonstrate the effectiveness of enhancing the immune response against tumors with an oncolytic Ad expressing both GM-CSF and B7-1 and provide a potential therapeutic strategy for the management of neoplasia.


Cellular Signalling | 2008

Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin.

Byung Woo Kim; Minee Choi; Yong-Seok Kim; Hyungju Park; Hye-Ryeon Lee; Chae-Ok Yun; Eun Joo Kim; June-Seek Choi; S.H. Kim; Hyewon Rhim; Bong-Kiun Kaang; Hyeon Son

The present study was undertaken to characterize neuronal activity-dependent expression and release of vascular endothelial growth factor (VEGF) from rat hippocampal neurons and its contribution to neuronal functions. Increased levels of VEGF164 mRNA were evident both in cultured neurons and slices, but not astrocytes, following membrane depolarization with KCl. Activity-dependent expression of VEGF, as well as its release, was dependent on the activation of the N-methyl-d-aspartate receptors or L-type voltage-activated calcium channels. A brief (10 min) application of recombinant VEGF165 to neurons elicited a slow rise in cytosolic Ca2+ in a VEGFR2 dependent manner. The VEGF-induced Ca2+ responses required Ca2+ influx, phospholipase Cgamma and Ca2+ stores. An inhibitor of transient receptor potential canonical channels reduced the VEGF-induced Ca2+ responses by 50%, suggesting the involvement of transient receptor potential canonical channels in the VEGF-mediated responses. The same brief stimulus with VEGF led to long-term synaptic enhancement dependent on protein synthesis. VEGF had prominent effects on the activation calcium/calmodulin protein kinase II and cAMP responsive element binding protein as well as extracellular signal-regulated protein kinase and mammalian target of rapamycin-all in a VEGFR2 dependent manner. Our findings suggest that VEGF released from neuronal cells plays a local role in Ca2+ influx and synaptic transmission that may influence the generation of long-term changes in synaptic efficacy.


Cancer Research | 2007

Relaxin-expressing, fiber chimeric oncolytic adenovirus prolongs survival of tumor-bearing mice.

Shanthi Ganesh; Melissa Gonzalez Edick; Neeraja Idamakanti; Marina Abramova; Melinda VanRoey; Michael L. Robinson; Chae-Ok Yun; Karin Jooss

Selective replication of oncolytic viruses in tumor cells provides a promising approach for the treatment of human cancers. One of the limitations observed with oncolytic viruses currently used in the treatment of solid tumors is the inefficient spread of virus throughout the tumor mass following intratumoral injection. Data are presented showing that oncolytic adenoviruses expressing the relaxin gene and containing an Ad5/Ad35 chimeric fiber showed significantly enhanced transduction and increased virus spread throughout the tumor when compared with non-relaxin-expressing, Ad5-based viruses. The increased spread of such viruses throughout tumors correlated well with improved antitumor efficacy and overall survival in two highly metastatic tumor models. Furthermore, nonreplicating viruses expressing relaxin did not increase metastases, suggesting that high level expression of relaxin will not enhance metastatic spread of tumors. In summary, the data show that relaxin may play a role in rearranging matrix components within tumors, which helps recombinant oncolytic adenoviruses to spread effectively throughout the tumor mass and thereby increase the extent of viral replication within the tumor. Expressing relaxin from Ad5/Ad35 fiber chimeric adenoviruses may prove a potent and novel approach to treating patients with cancer.


Gene Therapy | 2008

Short hairpin RNA-expressing oncolytic adenovirus-mediated inhibition of IL-8: effects on antiangiogenesis and tumor growth inhibition.

Ji Young Yoo; Jung-Hee Kim; J. Kim; Jing Hua Huang; Song-Nan Zhang; Yoon Kang; H.R. Kim; Chae-Ok Yun

RNA interference, due to its target specificity, may be highly effective as a novel therapeutic modality, but direct delivery of synthetic small interfering RNA still remains a major obstacle for this approach. To induce long-term expression and specific gene silencing, novel delivery vector system is also required. In this study, we have generated an efficient oncolytic adenovirus (Ad)-based short hairpin (shRNA) expression system (Ad-ΔB7-U6shIL8) against IL-8, a potent proangiogenic factor. To demonstrate IL-8-specificity of this newly engineered Ad-based shRNA, we also manufactured replication-incompetent Ads (Ad-ΔE1-CMVshIL8 and Ad-ΔE1-U6shIL8) under the control of the cytomegalovirus (CMV) and U6 promoters, respectively. Ad-ΔE1-U6shIL8 was highly effective in reducing IL-8 expression, and was much more effective in driving IL-8-specific shRNA than the CMV promoter-driven vector. The reduced IL-8 expression then translated into decreased angiogenesis in vitro as measured by migration, tube formation and rat aortic ring sprouting assays. In addition to its effect on endothelial cells, Ad-ΔE1-U6shIL8 also effectively suppressed the migration and invasion of cancer cells. In vivo, intratumoral injection of Ad-ΔB7-U6shIL8 significantly inhibited the growth of Hep3B and A549 human tumor xenografts. Histopathological analysis of Ad-ΔB7-U6shIL8-treated tumors revealed an increase in apoptotic cells and a reduction in vessel density. Finally, Ad-ΔB7-U6shIL8 was also shown to inhibit the growth of disseminated MDA-MB-231 breast cancer metastases. Taken together, these findings demonstrate the utility and antitumor effectiveness of oncolytic Ad expressing shRNA against IL-8.


Angewandte Chemie | 2011

Multifunctional Nanoparticles for Targeted Chemophotothermal Treatment of Cancer Cells

Sun Mi Lee; Huiyul Park; Joung Woo Choi; Young Nyun Park; Chae-Ok Yun; Kyung Hwa Yoo

This work was financially supported by NRF through the National Core Research Center for Nanomedical Technology (Grant No. R15-2004-024-00000-0) and by Basic Science Research Program through the NRF funded by the Ministry of Education, Science and Technology (2010-0003946).

Collaboration


Dive into the Chae-Ok Yun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge