Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eran Perlson is active.

Publication


Featured researches published by Eran Perlson.


Neuron | 2005

Vimentin-Dependent Spatial Translocation of an Activated MAP Kinase in Injured Nerve

Eran Perlson; Shlomit Hanz; Keren Ben-Yaakov; Yael Segal-Ruder; Rony Seger; Mike Fainzilber

How are phosphorylated kinases transported over long intracellular distances, such as in the case of axon to cell body signaling after nerve injury? Here, we show that the MAP kinases Erk1 and Erk2 are phosphorylated in sciatic nerve axoplasm upon nerve injury, concomitantly with the production of soluble forms of the intermediate filament vimentin by local translation and calpain cleavage in axoplasm. Vimentin binds phosphorylated Erks (pErk), thus linking pErk to the dynein retrograde motor via direct binding of vimentin to importin beta. Injury-induced Elk1 activation and neuronal regeneration are inhibited or delayed in dorsal root ganglion neurons from vimentin null mice, and in rats treated with a MEK inhibitor or with a peptide that prevents pErk-vimentin binding. Thus, soluble vimentin enables spatial translocation of pErk by importins and dynein in lesioned nerve.


Neuron | 2003

Axoplasmic Importins Enable Retrograde Injury Signaling in Lesioned Nerve

Shlomit Hanz; Eran Perlson; Dianna E. Willis; Jun-Qi Zheng; Rada Massarwa; Juan J. Huerta; Martin Koltzenburg; Matthias Kohler; Jan van-Minnen; Jeffery L. Twiss; Mike Fainzilber

Axoplasmic proteins containing nuclear localization signals (NLS) signal retrogradely by an unknown mechanism in injured nerve. Here we demonstrate that the importin/karyopherin alpha and beta families underlie this process. We show that importins are found in axons at significant distances from the cell body and that importin beta protein is increased after nerve lesion by local translation of axonal mRNA. This leads to formation of a high-affinity NLS binding complex that traffics retrogradely with the motor protein dynein. Trituration of synthetic NLS peptide at the injury site of axotomized dorsal root ganglion (DRG) neurons delays their regenerative outgrowth, and NLS introduction to sciatic nerve concomitantly with a crush injury suppresses the conditioning lesion induced transition from arborizing to elongating growth in L4/L5 DRG neurons. These data suggest a model whereby lesion-induced upregulation of axonal importin beta may enable retrograde transport of signals that modulate the regeneration of injured neurons.


Current Biology | 2010

Motor Coordination via a Tug-of-War Mechanism Drives Bidirectional Vesicle Transport

Adam G. Hendricks; Eran Perlson; Jennifer L. Ross; Harry W. Schroeder; Mariko Tokito; Erika L. F. Holzbaur

The microtubule motors kinesin and dynein function collectively to drive vesicular transport. High-resolution tracking of vesicle motility in the cell indicates that transport is often bidirectional, characterized by frequent directional changes. However, the mechanisms coordinating the collective activities of oppositely oriented motors bound to the same cargo are not well understood. To examine motor coordination, we purified neuronal transport vesicles and analyzed their motility via automated particle tracking with nanometer resolution. The motility of purified vesicles reconstituted in vitro closely models the movement of LysoTracker-positive vesicles in primary neurons, where processive bidirectional motility is interrupted with frequent directional switches, diffusional movement, and pauses. Quantitative analysis indicates that vesicles copurify with a low number of stably bound motors: one to five dynein and one to four kinesin motors. These observations compare well to predictions from a stochastic tug-of-war model, where transport is driven by the force-dependent kinetics of teams of opposing motors in the absence of external regulation. Together, these observations indicate that vesicles move robustly with a small complement of tightly bound motors and suggest an efficient regulatory scheme for bidirectional motility where small changes in the number of engaged motors manifest in large changes in the motility of cargo.


Trends in Neurosciences | 2010

Retrograde axonal transport: pathways to cell death?

Eran Perlson; Sandra Maday; Meng-meng Fu; Armen J. Moughamian; Erika L. F. Holzbaur

Active transport along the axon is crucial to the neuron. Motor-driven transport supplies the distal synapse with newly synthesized proteins and lipids, and clears damaged or misfolded proteins. Microtubule motors also drive long-distance signaling along the axon via signaling endosomes. Although positive signaling initiated by neurotrophic factors has been well-studied, recent research has focused on stress-signaling along the axon. Here, the connections between axonal transport alterations and neurodegeneration are discussed, including evidence for defective transport of vesicles, mitochondria, degradative organelles, and signaling endosomes in models of amyotrophic lateral sclerosis, Huntingtons, Parkinsons and Alzheimers disease. Defects in transport are sufficient to induce neurodegeneration, but recent progress suggests that changes in retrograde signaling pathways correlate with rapidly progressive neuronal cell death.


The Journal of Neuroscience | 2009

A Switch in Retrograde Signaling from Survival to Stress in Rapid-Onset Neurodegeneration

Eran Perlson; Goo Bo Jeong; Jenny L. Ross; Ram Dixit; Karen Wallace; Robert G. Kalb; Erika L. F. Holzbaur

Retrograde axonal transport of cellular signals driven by dynein is vital for neuronal survival. Mouse models with defects in the retrograde transport machinery, including the Loa mouse (point mutation in dynein) and the Tgdynamitin mouse (overexpression of dynamitin), exhibit mild neurodegenerative disease. Transport defects have also been observed in more rapidly progressive neurodegeneration, such as that observed in the SOD1G93A transgenic mouse model for familial amyotrophic lateral sclerosis (ALS). Here, we test the hypothesis that alterations in retrograde signaling lead to neurodegeneration. In vivo, in vitro, and live-cell imaging motility assays show misregulation of transport and inhibition of retrograde signaling in the SOD1G93A model. However, similar inhibition is also seen in the Loa and Tgdynamitin mouse models. Thus, slowing of retrograde signaling leads only to mild degeneration and cannot explain ALS etiology. To further pursue this question, we used a proteomics approach to investigate dynein-associated retrograde signaling. These data indicate a significant decrease in retrograde survival factors, including P-Trk (phospho-Trk) and P-Erk1/2, and an increase in retrograde stress factor signaling, including P-JNK (phosphorylated c-Jun N-terminal kinase), caspase-8, and p75NTR cleavage fragment in the SOD1G93A model; similar changes are not seen in the Loa mouse. Cocultures of motor neurons and glia expressing mutant SOD1 (mSOD1) in compartmentalized chambers indicate that inhibition of retrograde stress signaling is sufficient to block activation of cellular stress pathways and to rescue motor neurons from mSOD1-induced toxicity. Hence, a shift from survival-promoting to death-promoting retrograde signaling may be key to the rapid onset of neurodegeneration seen in ALS.


Molecular & Cellular Proteomics | 2004

O-Sulfonation of Serine and Threonine Mass Spectrometric Detection and Characterization of a New Posttranslational Modification in Diverse Proteins Throughout the Eukaryotes

K. F. Medzihradszky; Zsuzsanna Darula; Eran Perlson; Michael Fainzilber; Robert J. Chalkley; Haydn L. Ball; Doron C. Greenbaum; Matthew Bogyo; Darren R. Tyson; Ralph A. Bradshaw; Alma L. Burlingame

Protein sulfonation on serine and threonine residues is described for the first time. This post-translational modification is shown to occur in proteins isolated from organisms representing a broad span of eukaryote evolution, including the invertebrate mollusk Lymnaea stagnalis, the unicellular malaria parasite Plasmodium falciparum, and humans. Detection and structural characterization of this novel post-translational modification was carried out using liquid chromatography coupled to electrospray tandem mass spectrometry on proteins including a neuronal intermediate filament and a myosin light chain from the snail, a cathepsin-C-like enzyme from the parasite, and the cytoplasmic domain of the human orphan receptor tyrosine kinase Ror-2. These findings suggest that sulfonation of serine and threonine may be involved in multiple functions including protein assembly and signal transduction.


Molecular & Cellular Proteomics | 2004

Differential Proteomics Reveals Multiple Components in Retrogradely Transported Axoplasm After Nerve Injury

Eran Perlson; Katalin F. Medzihradszky; Zsuzsanna Darula; David W. Munno; Naweed I. Syed; Alma L. Burlingame; Mike Fainzilber

Information on axonal damage is conveyed to neuronal cell bodies by a number of signaling modalities, including the post-translational modification of axoplasmic proteins. Retrograde transport of a subset of such proteins is thought to induce or enhance a regenerative response in the cell body. Here we report the use of a differential 2D-PAGE approach to identify injury-correlated retrogradely transported proteins in nerves of the mollusk Lymnaea. A comprehensive series of gels at different pI ranges allowed resolution of ∼4000 spots by silver staining, and 172 of these were found to differ between lesioned versus control nerves. Mass spectrometric sequencing of 134 differential spots allowed their assignment to over 40 different proteins, some belonging to a vesicular ensemble blocked by the lesion and others comprising an up-regulated ensemble highly enriched in calpain cleavage products of an intermediate filament termed RGP51 (retrograde protein of 51 kDa). Inhibition of RGP51 expression by RNA interference inhibits regenerative outgrowth of adult Lymnaea neurons in culture. These results implicate regulated proteolysis in the formation of retrograde injury signaling complexes after nerve lesion and suggest that this signaling modality utilizes a wide range of protein components.


Journal of Cell Science | 2015

A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions

Eitan Erez Zahavi; Ariel Ionescu; Shani Gluska; Tal Gradus; Keren Ben-Yaakov; Eran Perlson

ABSTRACT Bidirectional molecular communication between the motoneuron and the muscle is vital for neuromuscular junction (NMJ) formation and maintenance. The molecular mechanisms underlying such communication are of keen interest and could provide new targets for intervention in motoneuron disease. Here, we developed a microfluidic platform with motoneuron cell bodies on one side and muscle cells on the other, connected by motor axons extending through microgrooves to form functional NMJs. Using this system, we were able to differentiate between the proximal and distal effects of oxidative stress and glial-derived neurotrophic factor (GDNF), demonstrating a dying-back degeneration and retrograde transmission of pro-survival signaling, respectively. Furthermore, we show that GDNF acts differently on motoneuron axons versus soma, promoting axonal growth and innervation only when applied locally to axons. Finally, we track for the first time the retrograde transport of secreted GDNF from muscle to neuron. Thus, our data suggests spatially distinct effects of GDNF – facilitating growth and muscle innervation at axon terminals and survival pathways in the soma.


Molecular Therapy | 2014

Long-distance Axonal Transport of AAV9 Is Driven by Dynein and Kinesin-2 and Is Trafficked in a Highly Motile Rab7-positive Compartment

Michael J. Castle; Eran Perlson; Erika L.F. Holzbaur; John H. Wolfe

Adeno-associated virus (AAV) vectors can move along axonal pathways after brain injection, resulting in transduction of distal brain regions. This can enhance the spread of therapeutic gene transfer and improve treatment of neurogenetic disorders that require global correction. To better understand the underlying cellular mechanisms that drive AAV trafficking in neurons, we investigated the axonal transport of dye-conjugated AAV9, utilizing microfluidic primary neuron cultures that isolate cell bodies from axon termini and permit independent analysis of retrograde and anterograde axonal transport. After entry, AAV was trafficked into nonmotile early and recycling endosomes, exocytic vesicles, and a retrograde-directed late endosome/lysosome compartment. Rab7-positive late endosomes/lysosomes that contained AAV were highly motile, exhibiting faster retrograde velocities and less pausing than Rab7-positive endosomes without virus. Inhibitor experiments indicated that the retrograde transport of AAV within these endosomes is driven by cytoplasmic dynein and requires Rab7 function, whereas anterograde transport of AAV is driven by kinesin-2 and exhibits unusually rapid velocities. Furthermore, increasing AAV9 uptake by neuraminidase treatment significantly enhanced virus transport in both directions. These findings provide novel insights into AAV trafficking within neurons, which should enhance progress toward the utilization of AAV for improved distribution of transgene delivery within the brain.


PLOS Pathogens | 2014

Rabies Virus Hijacks and Accelerates the p75NTR Retrograde Axonal Transport Machinery

Shani Gluska; Eitan Erez Zahavi; Michael Chein; Tal Gradus; Anja Bauer; Stefan Finke; Eran Perlson

Rabies virus (RABV) is a neurotropic virus that depends on long distance axonal transport in order to reach the central nervous system (CNS). The strategy RABV uses to hijack the cellular transport machinery is still not clear. It is thought that RABV interacts with membrane receptors in order to internalize and exploit the endosomal trafficking pathway, yet this has never been demonstrated directly. The p75 Nerve Growth Factor (NGF) receptor (p75NTR) binds RABV Glycoprotein (RABV-G) with high affinity. However, as p75NTR is not essential for RABV infection, the specific role of this interaction remains in question. Here we used live cell imaging to track RABV entry at nerve terminals and studied its retrograde transport along the axon with and without the p75NTR receptor. First, we found that NGF, an endogenous p75NTR ligand, and RABV, are localized in corresponding domains along nerve tips. RABV and NGF were internalized at similar time frames, suggesting comparable entry machineries. Next, we demonstrated that RABV could internalize together with p75NTR. Characterizing RABV retrograde movement along the axon, we showed the virus is transported in acidic compartments, mostly with p75NTR. Interestingly, RABV is transported faster than NGF, suggesting that RABV not only hijacks the transport machinery but can also manipulate it. Co-transport of RABV and NGF identified two modes of transport, slow and fast, that may represent a differential control of the trafficking machinery by RABV. Finally, we determined that p75NTR-dependent transport of RABV is faster and more directed than p75NTR-independent RABV transport. This fast route to the neuronal cell body is characterized by both an increase in instantaneous velocities and fewer, shorter stops en route. Hence, RABV may employ p75NTR-dependent transport as a fast mechanism to facilitate movement to the CNS.

Collaboration


Dive into the Eran Perlson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keren Ben-Yaakov

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Mike Fainzilber

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam G. Hendricks

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge