Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keren Ben-Yaakov is active.

Publication


Featured researches published by Keren Ben-Yaakov.


Neuron | 2005

Vimentin-Dependent Spatial Translocation of an Activated MAP Kinase in Injured Nerve

Eran Perlson; Shlomit Hanz; Keren Ben-Yaakov; Yael Segal-Ruder; Rony Seger; Mike Fainzilber

How are phosphorylated kinases transported over long intracellular distances, such as in the case of axon to cell body signaling after nerve injury? Here, we show that the MAP kinases Erk1 and Erk2 are phosphorylated in sciatic nerve axoplasm upon nerve injury, concomitantly with the production of soluble forms of the intermediate filament vimentin by local translation and calpain cleavage in axoplasm. Vimentin binds phosphorylated Erks (pErk), thus linking pErk to the dynein retrograde motor via direct binding of vimentin to importin beta. Injury-induced Elk1 activation and neuronal regeneration are inhibited or delayed in dorsal root ganglion neurons from vimentin null mice, and in rats treated with a MEK inhibitor or with a peptide that prevents pErk-vimentin binding. Thus, soluble vimentin enables spatial translocation of pErk by importins and dynein in lesioned nerve.


Molecular and Cellular Neuroscience | 2005

Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective

Oleg Butovsky; Adolfo E. Talpalar; Keren Ben-Yaakov; Michal Schwartz

Abstract ‘Protective autoimmunity’ refers to a well-controlled anti-self response that helps the body resist neurodegeneration. The response is mediated by autoimmune T cells, which produce cytokines and growth factors. Using an in vitro assay of hippocampal slices, we show that the cytokines interferon-γ and (especially) interleukin-4, characteristic of pro-inflammatory and anti-inflammatory T cells, respectively, can make microglia neuroprotective. Aggregated β-amyloid, like bacterial cell wall-derived lipopolysaccharide, rendered the microglia cytotoxic. Cytotoxicity was correlated with a signal transduction pathway that down-regulates expression of class-II major histocompatibility proteins (MHC-II) through the MHC-II-transactivator and the invariant chain. Protection by interleukin-4 was attributed to down-regulation of tumor necrosis factor-α and up-regulation of insulin-like growth factor I. These findings suggest that beneficial or harmful expression of the local immune response in the damaged CNS depends on how microglia interpret the threat, and that a well-regulated T-cell-mediated response enables microglia to alleviate rather than exacerbate stressful situations in the CNS.


The EMBO Journal | 2012

Axonal transcription factors signal retrogradely in lesioned peripheral nerve.

Keren Ben-Yaakov; Shachar Y. Dagan; Yael Segal-Ruder; Ophir Shalem; Deepika Vuppalanchi; Dianna E. Willis; Dmitry Yudin; Ida Rishal; Franziska Rother; Michael Bader; Armin Blesch; Yitzhak Pilpel; Jeffery L. Twiss; Mike Fainzilber

Retrograde axonal injury signalling stimulates cell body responses in lesioned peripheral neurons. The involvement of importins in retrograde transport suggests that transcription factors (TFs) might be directly involved in axonal injury signalling. Here, we show that multiple TFs are found in axons and associate with dynein in axoplasm from injured nerve. Biochemical and functional validation for one TF family establishes that axonal STAT3 is locally translated and activated upon injury, and is transported retrogradely with dynein and importin α5 to modulate survival of peripheral sensory neurons after injury. Hence, retrograde transport of TFs from axonal lesion sites provides a direct link between axon and nucleus.


Neuron | 2008

Localized Regulation of Axonal RanGTPase Controls Retrograde Injury Signaling in Peripheral Nerve

Dmitry Yudin; Shlomit Hanz; Soonmoon Yoo; Elena Iavnilovitch; Dianna E. Willis; Tal Gradus; Deepika Vuppalanchi; Yael Segal-Ruder; Keren Ben-Yaakov; Miki Hieda; Yoshihiro Yoneda; Jeffery L. Twiss; Mike Fainzilber

Peripheral sensory neurons respond to axon injury by activating an importin-dependent retrograde signaling mechanism. How is this mechanism regulated? Here, we show that Ran GTPase and its associated effectors RanBP1 and RanGAP regulate the formation of importin signaling complexes in injured axons. A gradient of nuclear RanGTP versus cytoplasmic RanGDP is thought to be fundamental for the organization of eukaryotic cells. Surprisingly, we find RanGTP in sciatic nerve axoplasm, distant from neuronal cell bodies and nuclei, and in association with dynein and importin-alpha. Following injury, localized translation of RanBP1 stimulates RanGTP dissociation from importins and subsequent hydrolysis, thereby allowing binding of newly synthesized importin-beta to importin-alpha and dynein. Perturbation of RanGTP hydrolysis or RanBP1 blockade at axonal injury sites reduces the neuronal conditioning lesion response. Thus, neurons employ localized mechanisms of Ran regulation to control retrograde injury signaling in peripheral nerve.


Science Signaling | 2010

Signaling to transcription networks in the neuronal retrograde injury response.

Izhak Michaelevski; Yael Segal-Ruder; Meir Rozenbaum; Katalin F. Medzihradszky; Ophir Shalem; Giovanni Coppola; Shirley Horn-Saban; Keren Ben-Yaakov; Shachar Y. Dagan; Ida Rishal; Daniel H. Geschwind; Yitzhak Pilpel; Alma L. Burlingame; Mike Fainzilber

Robustness in nerve injury responses results from control of axon-to-soma signaling networks by multiple regulatory components. Calling In the Repair Crew The ability of a damaged neuron to regenerate depends on the initiation of a repair program in the cell body, so that the injured neuron switches from a “growth-as-normal” mode to an “injury-response” mode. Initiation of such a repair program depends in turn on the receipt by the cell body of injury signals from the lesion. Michaelevski et al. combined phosphoproteomic analyses of injured and uninjured rat sciatic nerve with microarray analyses of transcripts in the dorsal root ganglia to identify retrograde signaling networks implicated in activating the transcriptional response to axonal injury. Pharmacological manipulation of various protein kinases that appeared in many of these networks and were predicted to play a key role in affecting signaling network size and connectivity affected neurite outgrowth of cultured sensory neurons. Paradoxically, the combined manipulation of pairs of these kinases was sometimes less effective at affecting neurite outgrowth than manipulation of either alone—an observation that has substantial implications for development of appropriate therapies for treating nerve injury. Retrograde signaling from axon to soma activates intrinsic regeneration mechanisms in lesioned peripheral sensory neurons; however, the links between axonal injury signaling and the cell body response are not well understood. Here, we used phosphoproteomics and microarrays to implicate ~900 phosphoproteins in retrograde injury signaling in rat sciatic nerve axons in vivo and ~4500 transcripts in the in vivo response to injury in the dorsal root ganglia. Computational analyses of these data sets identified ~400 redundant axonal signaling networks connected to 39 transcription factors implicated in the sensory neuron response to axonal injury. Experimental perturbation of individual overrepresented signaling hub proteins, including Abl, AKT, p38, and protein kinase C, affected neurite outgrowth in sensory neurons. Paradoxically, however, combined perturbation of Abl together with other hub proteins had a reduced effect relative to perturbation of individual proteins. Our data indicate that nerve injury responses are controlled by multiple regulatory components, and suggest that network redundancies provide robustness to the injury response.


Journal of Cell Science | 2015

A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions

Eitan Erez Zahavi; Ariel Ionescu; Shani Gluska; Tal Gradus; Keren Ben-Yaakov; Eran Perlson

ABSTRACT Bidirectional molecular communication between the motoneuron and the muscle is vital for neuromuscular junction (NMJ) formation and maintenance. The molecular mechanisms underlying such communication are of keen interest and could provide new targets for intervention in motoneuron disease. Here, we developed a microfluidic platform with motoneuron cell bodies on one side and muscle cells on the other, connected by motor axons extending through microgrooves to form functional NMJs. Using this system, we were able to differentiate between the proximal and distal effects of oxidative stress and glial-derived neurotrophic factor (GDNF), demonstrating a dying-back degeneration and retrograde transmission of pro-survival signaling, respectively. Furthermore, we show that GDNF acts differently on motoneuron axons versus soma, promoting axonal growth and innervation only when applied locally to axons. Finally, we track for the first time the retrograde transport of secreted GDNF from muscle to neuron. Thus, our data suggests spatially distinct effects of GDNF – facilitating growth and muscle innervation at axon terminals and survival pathways in the soma.


Journal of Biological Chemistry | 2013

Dynein Interacts with the Neural Cell Adhesion Molecule (NCAM180) to Tether Dynamic Microtubules and Maintain Synaptic Density in Cortical Neurons

Eran Perlson; Adam G. Hendricks; Jacob E. Lazarus; Keren Ben-Yaakov; Tal Gradus; Mariko Tokito; Erika L.F. Holzbaur

Background: Dynein is a microtubule motor that can also tether dynamic microtubule plus-ends. Results: Neural cell adhesion molecule isoform-180 (NCAM180) binds directly to dynein, facilitating microtubule tethering at the cortex and enhancing cell-cell adhesion and synaptic density. Conclusion: The dynein-NCAM180 interaction contributes to the maintenance of synaptic density in cortical neurons. Significance: Dynein functions as both microtubule motor and microtubule tether in neurons. Cytoplasmic dynein is well characterized as an organelle motor, but dynein also acts to tether and stabilize dynamic microtubule plus-ends in vitro. Here we identify a novel and direct interaction between dynein and the 180-kDa isoform of the neural cell adhesion molecule (NCAM). Optical trapping experiments indicate that dynein bound to beads via the NCAM180 interaction domain can tether projecting microtubule plus-ends. Live cell assays indicate that the NCAM180-dependent recruitment of dynein to the cortex leads to the selective stabilization of microtubules projecting to NCAM180 patches at the cell periphery. The dynein-NCAM180 interaction also enhances cell-cell adhesion in heterologous cell assays. Dynein and NCAM180 co-precipitate from mouse brain extract and from synaptosomal fractions, consistent with an endogenous interaction in neurons. Thus, we examined microtubule dynamics and synaptic density in primary cortical neurons. We find that depletion of NCAM, inhibition of the dynein-NCAM180 interaction, or dampening of microtubule dynamics with low dose nocodazole all result in significantly decreased in synaptic density. Based on these observations, we propose a working model for the role of dynein at the synapse, in which the anchoring of the motor to the cortex via binding to an adhesion molecule mediates the tethering of dynamic microtubule plus-ends to potentiate synaptic stabilization.


Developmental Neurobiology | 2013

WIS‐neuromath enables versatile high throughput analyses of neuronal processes

Ida Rishal; Ofra Golani; Marek Rajman; Barbara Costa; Keren Ben-Yaakov; Zohar Schoenmann; Avraham Yaron; Ronen Basri; Mike Fainzilber; Meirav Galun

Automated analyses of neuronal morphology are important for quantifying connectivity and circuitry in vivo, as well as in high content imaging of primary neuron cultures. The currently available tools for quantification of neuronal morphology either are highly expensive commercial packages or cannot provide automated image quantifications at single cell resolution. Here, we describe a new software package called WIS‐NeuroMath, which fills this gap and provides solutions for automated measurement of neuronal processes in both in vivo and in vitro preparations. Diverse image types can be analyzed without any preprocessing, enabling automated and accurate detection of neurites followed by their quantification in a number of application modules. A cell morphology module detects cell bodies and attached neurites, providing information on neurite length, number of branches, cell body area, and other parameters for each cell. A neurite length module provides a solution for images lacking cell bodies, such as tissue sections. Finally, a ganglion explant module quantifies outgrowth by identifying neurites at different distances from the ganglion. Quantification of a diverse series of preparations with WIS‐NeuroMath provided data that were well matched with parallel analyses of the same preparations in established software packages such as MetaXpress or NeuronJ. The capabilities of WIS‐NeuroMath are demonstrated in a range of applications, including in dissociated and explant cultures and histological analyses on thin and whole‐mount sections. WIS‐NeuroMath is freely available to academic users, providing a versatile and cost‐effective range of solutions for quantifying neurite growth, branching, regeneration, or degeneration under different experimental paradigms.


European Journal of Cell Biology | 2016

Compartmental microfluidic system for studying muscle–neuron communication and neuromuscular junction maintenance

Ariel Ionescu; Eitan Erez Zahavi; Tal Gradus; Keren Ben-Yaakov; Eran Perlson

Molecular communication between the motoneuron and the muscle is vital for neuromuscular junction (NMJ) formation and maintenance. Disruption in the structure and function of NMJs is a hallmark of various neurodegenerative processes during both development and pathological events. Still due to the complexity of this process, it is very difficult to elucidate the cellular mechanisms underlying it, generating a keen interest for developing better tools for investigating it. Here we describe a simplified method to study mechanisms of NMJs formation, maintenance and disruption. A spinal cord explant from mice expressing the Hb9::GFP motoneuron marker is plated on one side of a compartmental chamber, and myotubes derived from muscle satellite progenitor cells are plated on the other. The GFP labeled motoneurons extend their axons via microgrooves in the chamber to innervate the muscle cells and to form functional in-vitro NMJs. Next we provide procedures to measure axon growth and to reliably quantify NMJ activity using imaging of both muscle contractions and fast intracellular calcium changes. This platform allows precise control, monitoring and manipulation of subcellular microenvironments. Specifically, it enables to distinguish local from retrograde signaling mechanisms and allows restricted experimental intervention in local compartments along the muscle-neuron route.


PLOS Genetics | 2016

Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia.

Shiran Naftelberg; Ziv Abramovitch; Shani Gluska; Sivan Yannai; Yuvraj Joshi; Maya Donyo; Keren Ben-Yaakov; Tal Gradus; Jonathan Zonszain; Chen Farhy; Ruth Ashery-Padan; Eran Perlson; Gil Ast

Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.

Collaboration


Dive into the Keren Ben-Yaakov's collaboration.

Top Co-Authors

Avatar

Mike Fainzilber

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yael Segal-Ruder

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ida Rishal

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitry Yudin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rony Seger

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge