Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erbin Dai is active.

Publication


Featured researches published by Erbin Dai.


Journal of Clinical Investigation | 2000

The viral anti-inflammatory chemokine-binding protein M-T7 reduces intimal hyperplasia after vascular injury

Liying Liu; Alshad S. Lalani; Erbin Dai; Bruce T. Seet; Colin Macauley; Raj Singh; Lilly Fan; Grant McFadden; Alexandra Lucas

Chemokines and IFN-gamma function as central regulators of inflammatory responses to vascular injury. Both classes of cytokines are upregulated during restenosis, a response to vascular injury that leads to recurrent atherosclerotic plaque growth, but the relative impact of each class of cytokines remains undetermined. M-T7 is a secreted myxoma viral immunomodulatory glycoprotein that functions both as a species-specific inhibitor of rabbit IFN-gamma and as a chemokine-binding protein, interacting with a wide range of C, C-C, and C-X-C chemokines in a species-nonspecific fashion. We wished to (a) assess the efficacy of purified M-T7 protein in inhibiting intimal hyperplasia after angioplasty injury and (b) exploit unique species-specific functions of M-T7 in order to judge the relative importance of each cytokine class on plaque growth. Anesthetized New Zealand white rabbits and Sprague-Dawley rats received either M-T7 or control at the time of arterial angioplasty injury. Histological analysis at 28 days demonstrated significant reductions in intimal hyperplasia with M-T7 treatment in both models, with an associated early inhibition of inflammatory cell invasion. Purified M-T7 protein inhibits intimal hyperplasia after angioplasty injury in a species-nonspecific fashion, thus implicating the chemokine-binding activity as more critical for prevention of plaque growth after vascular injury.


Acta Biomaterialia | 2013

Acellular vascular grafts generated from collagen and elastin analogs.

Vivek A. Kumar; Jeffrey M. Caves; Carolyn A. Haller; Erbin Dai; Liying Liu; Stephanie Grainger; Elliot L. Chaikof

Tissue-engineered vascular grafts require long fabrication times, in part due to the requirement of cells from a variety of cell sources to produce a robust, load-bearing extracellular matrix. Herein, we propose a design strategy for the fabrication of tubular conduits comprising collagen fiber networks and elastin-like protein polymers to mimic native tissue structure and function. Dense fibrillar collagen networks exhibited an ultimate tensile strength (UTS) of 0.71±0.06 MPa, strain to failure of 37.1±2.2% and Youngs modulus of 2.09±0.42 MPa, comparing favorably to a UTS and a Youngs modulus for native blood vessels of 1.4-11.1 MPa and 1.5±0.3 MPa, respectively. Resilience, a measure of recovered energy during unloading of matrices, demonstrated that 58.9±4.4% of the energy was recovered during loading-unloading cycles. Rapid fabrication of multilayer tubular conduits with maintenance of native collagen ultrastructure was achieved with internal diameters ranging between 1 and 4mm. Compliance and burst pressures exceeded 2.7±0.3%/100 mmHg and 830±131 mmHg, respectively, with a significant reduction in observed platelet adherence as compared to expanded polytetrafluoroethylene (ePTFE; 6.8±0.05×10(5) vs. 62±0.05×10(5) platelets mm(-2), p<0.01). Using a rat aortic interposition model, early in vivo responses were evaluated at 2 weeks via Doppler ultrasound and CT angiography with immunohistochemistry confirming a limited early inflammatory response (n=8). Engineered collagen-elastin composites represent a promising strategy for fabricating synthetic tissues with defined extracellular matrix content, composition and architecture.


Circulation | 2000

Inhibition of Transplant Vasculopathy in a Rat Aortic Allograft Model After Infusion of Anti-Inflammatory Viral Serpin

Leslie W. Miller; Erbin Dai; Piers Nash; Liying Liu; Carolyn Icton; Dennis Klironomos; Lilly Fan; Patric N. Nation; Robert Zhong; Grant McFadden; Alexandra Lucas

BACKGROUND Transplant vasculopathy remains a difficult therapeutic problem, resulting in the majority of late cardiac graft losses. This chronic vascular disease is thought to be triggered by alloantigen-dependent and alloantigen-independent inflammatory factors. Despite improved 1-year survival, the incidence of transplant vasculopathy has not improved with current immunosuppressive protocols. Highly effective strategies have evolved in the large DNA viruses that shield infecting viruses from host inflammatory responses. Serp-1 is a secreted myxoma virus anti-inflammatory serine proteinase inhibitor. Serp-1 inhibits plasminogen activators in a manner similar to plasminogen activator inhibitor (PAI-1), a vascular protein that plays a pivotal regulatory role in vascular wound healing. In this study, we tested the ability of purified Serp-1 protein to ameliorate posttransplant vasculopathy after rat aortic allograft surgery. METHODS AND RESULTS Serp-1 protein or controls were infused into 98 rats immediately after segmental aortic allograft transplantation. After either late (28 days, 64 rats) or early (12 to 48 hours, 24 rats) follow-up, transplanted aortic segments were harvested for morphological and immunohistochemical analysis. Significant reductions in intimal plaque growth (P<0.002) and mononuclear cell invasion (P<0.033) were detected after Serp-1 infusion at nanogram doses. Serp-1 reduced early macrophage (P<0.0016) and nonspecific lymphocyte (P<0.0179) invasion into medial and adventitial layers and inhibited associated depletion of medial smooth muscle cells (P<0.0006). CONCLUSIONS Infusion of a viral anti-inflammatory serpin, Serp-1, significantly reduces early inflammatory responses and later luminal occlusion in a rat aortic allograft model.


Journal of Biological Chemistry | 2003

Serp-1, a viral anti-inflammatory serpin, regulates cellular serine proteinase and serpin responses to vascular injury.

Erbin Dai; Haiyan Guan; Liying Liu; Stephen H. Little; Grant McFadden; Sepideh Vaziri; Henian Cao; Iordanka A. Ivanova; Leila Bocksch; Alexandra Lucas

Complex DNA viruses have tapped into cellular serpin responses that act as key regulatory steps in coagulation and inflammatory cascades. Serp-1 is one such viral serpin that effectively protects virus-infected tissues from host inflammatory responses. When given as purified protein, Serp-1 markedly inhibits vascular monocyte invasion and plaque growth in animal models. We have investigated mechanisms of viral serpin inhibition of vascular inflammatory responses. In vascular injury models, Serp-1 altered early cellular plasminogen activator (tissue plasminogen activator), inhibitor (PAI-1), and receptor (urokinase-type plasminogen activator) expression (p < 0.01). Serp-1, but not a reactive center loop mutant, up-regulated PAI-1 serpin expression in human endothelial cells. Treatment of endothelial cells with antibody to urokinase-type plasminogen activator and vitronectin blocked Serp-1-induced changes. Significantly, Serp-1 blocked intimal hyperplasia (p< 0.0001) after aortic allograft transplant (p < 0.0001) in PAI-1-deficient mice. Serp-1 also blocked plaque growth after aortic isograft transplant and after wire-induced injury (p < 0.05) in PAI-1-deficient mice indicating that increase in PAI-1 expression is not required for Serp-1 to block vasculopathy development. Serp-1 did not inhibit plaque growth in uPAR-deficient mice after aortic allograft transplant. We conclude that the poxviral serpin, Serp-1, attenuates vascular inflammatory responses to injury through a pathway mediated by native uPA receptors and vitronectin.


Journal of Dental Research | 2012

Increased Atherogenesis during Streptococcus mutans Infection in ApoE-null Mice

Lakshmyya Kesavalu; Alexandra Lucas; Raj K. Verma; Li Liu; Erbin Dai; E. Sampson; Ann Progulske-Fox

Streptococcus mutans, a dental caries pathogen, also causes endocarditis and is detected in atheroscelerotic plaque. We investigated the potential for an invasive strain of S. mutans, OMZ175, to accelerate plaque growth in apolipoprotein E deficient (ApoEnull) mice without and with balloon angioplasty (BA) injury, a model of restenosis. ApoEnull mice were divided into 4 groups (N = 10), 2 with and 2 without BA. One each of the BA and non-BA groups was infected with S. mutans (Sm). S. mutans DNA, plaque area, inflammatory cell invasion, and Toll-like receptor (TLR) expression were measured at 6-20 weeks post-infection. S. mutans genomic DNA was detected in the aorta, liver, spleen, and heart. Plaque growth was significantly increased in infected mice with BA (Sm+BA) vs. those in the non-infected groups (p < 0.03). Plaque size was increased after infection without BA (Sm), but did not reach significance. Aortic specimens from both S. mutans and Sm+BA groups displayed increased numbers of macrophages, and TLR4 expression was increased in BA mice. In conclusion, S. mutans infection accelerated plaque growth, macrophage invasion, and TLR4 expression after angioplasty. S. mutans may also be associated with atherosclerotic plaque growth in non-injured arteries.


PLOS ONE | 2010

Inhibition of Chemokine-Glycosaminoglycan Interactions in Donor Tissue Reduces Mouse Allograft Vasculopathy and Transplant Rejection

Erbin Dai; Liying Liu; Hao Wang; Dana McIvor; Yun ming Sun; Colin Macaulay; Elaine King; Ganesh Munuswamy-Ramanujam; Mee Y. Bartee; Jennifer Williams; Jennifer Davids; Israel F. Charo; Grant McFadden; Jeffrey D. Esko; Alexandra Lucas

Background Binding of chemokines to glycosaminoglycans (GAGs) is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct local leukocyte chemotaxis into damaged or transplanted tissues. While chemokine-receptor binding has been extensively studied during allograft transplantation, effects of glycosaminoglycan (GAG) interactions with chemokines on transplant longevity are less well known. Here we examine the impact of interrupting chemokine-GAG interactions and chemokine-receptor interactions, both locally and systemically, on vascular disease in allografts. Methodology/Principal Findings Analysis of GAG or CC chemokine receptor 2 (CCR2) deficiency were coupled with the infusion of viral chemokine modulating proteins (CMPs) in mouse aortic allograft transplants (n = 239 mice). Inflammatory cell invasion and neointimal hyperplasia were significantly reduced in N-deacetylase-N-sulfotransferase-1 (Ndst1 f/f TekCre +) heparan sulfate (GAG)-deficient (Ndst1−/−, p<0.044) and CCR2-deficient (Ccr2−/−, p<0.04) donor transplants. Donor tissue GAG or CCR2 deficiency markedly reduced inflammation and vasculopathy, whereas recipient deficiencies did not. Treatment with three CMPs was also investigated; Poxviral M-T1 blocks CC chemokine receptor binding, M-T7 blocks C, CC, and CXC GAG binding, and herpesviral M3 binds receptor and GAG binding for all classes. M-T7 reduced intimal hyperplasia in wild type (WT) (Ccr2+/+, p≤0.003 and Ccr2−/−, p≤0.027) aortic allografts, but not in Ndst1−/− aortic allografts (p = 0.933). M-T1 and M3 inhibited WT (Ccr2+/+ and Ndst1 +/+, p≤0.006) allograft vasculopathy, but did not block vasculopathy in Ccr2−/− (p = 0.61). M-T7 treatment alone, even without immunosuppressive drugs, also significantly prolonged survival of renal allograft transplants (p≤0.001). Conclusions/Significance Interruption of chemokine-GAG interactions, even in the absence of chemokine-receptor blockade, is a highly effective approach to reduction of allograft rejection, reducing vascular inflammation and prolonging allograft survival. Although chemokines direct both local and systemic cell migration, interruption of inherent chemokine responses in the donor tissue unexpectedly had a greater therapeutic impact on allograft vasculopathy.


Journal of Biological Chemistry | 2006

Identification of Myxomaviral Serpin Reactive Site Loop Sequences That Regulate Innate Immune Responses

Erbin Dai; Kasinath Viswanathan; Yun ming Sun; Xing Li; Li Ying Liu; Babajide Togonu-Bickersteth; Jakob Richardson; Colin Macaulay; Piers Nash; Peter C. Turner; Steven H. Nazarian; Richard W. Moyer; Grant McFadden; Alexandra Lucas

The thrombolytic serine protease cascade is intricately involved in activation of innate immune responses. The urokinase-type plasminogen activator and receptor form complexes that aid inflammatory cell invasion at sites of arterial injury. Plasminogen activator inhibitor-1 is a mammalian serpin that binds and regulates the urokinase receptor complex. Serp-1, a myxomaviral serpin, also targets the urokinase receptor, displaying profound anti-inflammatory and anti-atherogenic activity in a wide range of animal models. Serp-1 reactive center site mutations, mimicking known mammalian and viral serpins, were constructed in order to define sequences responsible for regulation of inflammation. Thrombosis, inflammation, and plaque growth were assessed after treatment with Serp-1, Serp-1 chimeras, plasminogen activator inhibitor-1, or unrelated viral serpins in plasminogen activator inhibitor or urokinase receptor-deficient mouse aortic transplants. Altering the P1-P1′ Arg-Asn sequence compromised Serp-1 protease-inhibitory activity and anti-inflammatory activity in animal models; P1-P1′ Ala-Ala mutants were inactive, P1 Met increased remodeling, and P1′ Thr increased thrombosis. Substitution of Serp-1 P2–P7 with Ala6 allowed for inhibition of urokinase but lost plasmin inhibition, unexpectedly inducing a diametrically opposed, proinflammatory response with mononuclear cell activation, thrombosis, and aneurysm formation (p < 0.03). Other serpins did not reproduce Serp-1 activity; plasminogen activator inhibitor-1 increased thrombosis (p < 0.0001), and unrelated viral serpin, CrmA, increased inflammation. Deficiency of urokinase receptor in mouse transplants blocked Serp-1 and chimera activity, in some cases increasing inflammation. In summary, 1) Serp-1 anti-inflammatory activity is highly dependent upon the reactive center loop sequence, and 2) plasmin inhibition is central to anti-inflammatory activity.


Journal of Heart and Lung Transplantation | 2000

Transplant vasculopathy: viral anti-inflammatory serpin regulation of atherogenesis

Alexandra Lucas; Erbin Dai; Liying Liu; Haiyan Guan; Piers Nash; Grant McFadden; Leslie W. Miller

BACKGROUND Surgical and ischemic injury to the artery wall initiates vascular wound-healing responses that stimulate atherosclerotic plaque growth. The plasminogen activators have cellular chemotactic, adhesion, and proteolytic activity. Serp-1 is a secreted myxoma virus glycoprotein serpin that binds and inhibits plasminogen activators. We have examined the effects of Serp-1 on plaque growth and inflammatory cell invasion in animal models after balloon injury and after aortic allograft transplant. METHODS We used histologic analysis to assess 4 animal models of angioplasty-mediated injury and 2 models of aortic allograft transplant for intimal hyperplasia and cellular invasion. We assessed plasminogen activator (uPA and tPA) and inhibitor (PAI-1) expression in rat iliofemoral arteries after balloon injury using Western blot, enzyme activity, and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS Plaque growth after balloon injury decreased after Serp-1 treatment in all balloon-injury models tested. Transplant vasculopathy also significantly decreased in 2 rat models of aortic allograft transplant. Infusion of a Serp-1 active site mutant, that lacked plasminogen activator inhibiting activity, did not inhibit plaque growth. Quantitative RT-PCR detected increased transcription of PAI-1 mRNA. Increased PAI-1 protein and enzyme-inhibitory activity was also detected in Serp-1-treated arteries by activity assay and Western blot. CONCLUSIONS Thrombolytic serpins are central regulatory agents in vascular wound-healing responses. Investigation of the inhibitory mechanisms of viral serpins may provide new insights into atherogenesis.


Thrombosis and Haemostasis | 2006

Myxoma viral serpin, Serp-1, a unique interceptor of coagulation and innate immune pathways

Kasinath Viswanathan; Liying Liu; Sepideh Vaziri; Erbin Dai; Jakob Richardson; Babajide Togonu-Bickersteth; Pracha Vatsya; Alexander Christov; Alexandra Lucas

Serpins maintain haemostasis through regulation of serine proteinases in the thrombotic and thrombolytic pathways. Viruses encode serpins that can alter thrombotic and thrombolytic responses producing, in some cases, disseminated intravascular coagulation (DIC). However, it has not been precisely defined how viral serpins induce these profound responses. The rabbit myxoma viral serpin, Serp-1 inhibits urokinase- and tissue-type plasminogen activators (uPA and tPA), plasmin and factor Xa in vitro and exhibits remarkable anti-inflammatory activity in various animal models. The effects of Serp-1 on activation of human platelets, endothelial cells, monocytes and T cells that mediate thrombosis and innate immune responses were therefore examined. We found that Serp-1 attenuated platelet and mononuclear cell adhesion to fibronectin and collagen. Serp-1 similarly inhibited monocyte migration into the peritoneum. Serp-1 inhibition of monocyte migration was lost in uPA receptor (uPAR) deficient mice. Serp-1 bound to the plasma membrane surface and altered uPA activation of endothelial cells (p=0.001), thrombin activation of platelets (p=0.021) and phorbol ester activation of endothelial (p=0.047), monocyte (p=0.011) and Jurkat T cells (p=0.012) as measured by intracellular calcium. Modulation of cellular activation was confirmed by membrane fluidity analysis. Microarray analysis of Serp-1 treated endothelial cells revealed alterations in Inositol 1,4,5-triphosphate receptor type II (ITPR2) a calcium-regulating gene. This study demonstrates the unique capacity of a viral serpin, Serp-1 to modify adhesion, activation, gene expression and calcium homeostasis in a wide range of cells that regulate coagulation and inflammation. Endothelial cells potentially represent a pivotal regulatory point for Serp-1 anti-inflammatory activity.


Photochemistry and Photobiology | 2004

In Vivo Optical Analysis of Quantitative Changes in Collagen and Elastin During Arterial Remodeling

Alexander Christov; Renee M. Korol; Erbin Dai; Liying Liu; Haiyan Guan; Mark A. Bernards; Paul B. Cavers; David J. Susko; Alexandra Lucas

Abstract Altered collagen and elastin content correlates closely with remodeling of the arterial wall after injury. Optical analytical approaches have been shown to detect qualitative changes in plaque composition, but the capacity for detection of quantitative changes in arterial collagen and elastin content in vivo is not known. We have assessed fluorescence spectroscopy for detection of quantitative changes in arterial composition in situ, in rabbit models of angioplasty and stent implant. Fluorescence emission intensity (FEI) recorded at sites remote from the primary implant site was correlated with immunohistochemical (IH) analysis and extracted elastin and collagen. FEI was significantly decreased (P < 0.05) after treatment with anti-inflammatory agents, and plaque area decreased on comparison with saline-treated rabbits after stent implant or angioplasty (P ≤ 0.013). Excellent correlations for FEI with elastin and collagen I, III and IV content measured by IH (R2 ≥ 0.961) analysis were detected by multiple regression (MR) analysis. Good correlations also were found for FEI with elastin and collagen measured by high-performance liquid chromatography; MR analysis provided highly predictive values for collagen and elastin (R2 ≥ 0.994). Fluorescence spectroscopic analysis detects quantitative compositional changes in arterial connective tissue in vivo, demonstrating changes at sites remote from primary angioplasty and stent implant sites.

Collaboration


Dive into the Erbin Dai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Lucas

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Lucas

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Hao Chen

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn A. Haller

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elliot L. Chaikof

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge