Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eri Kobayashi is active.

Publication


Featured researches published by Eri Kobayashi.


Nature Communications | 2016

Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription

Eri Kobayashi; Takafumi Suzuki; Ryo Funayama; Takeshi Nagashima; Makiko Hayashi; Hiroki Sekine; Nobuyuki Tanaka; Takashi Moriguchi; Hozumi Motohashi; Keiko Nakayama; Masayuki Yamamoto

Nrf2 (NF-E2-related factor-2) transcription factor regulates oxidative/xenobiotic stress response and also represses inflammation. However, the mechanisms how Nrf2 alleviates inflammation are still unclear. Here, we demonstrate that Nrf2 interferes with lipopolysaccharide-induced transcriptional upregulation of proinflammatory cytokines, including IL-6 and IL-1β. Chromatin immunoprecipitation (ChIP)-seq and ChIP-qPCR analyses revealed that Nrf2 binds to the proximity of these genes in macrophages and inhibits RNA Pol II recruitment. Further, we found that Nrf2-mediated inhibition is independent of the Nrf2-binding motif and reactive oxygen species level. Murine inflammatory models further demonstrated that Nrf2 interferes with IL6 induction and inflammatory phenotypes in vivo. Thus, contrary to the widely accepted view that Nrf2 suppresses inflammation through redox control, we demonstrate here that Nrf2 opposes transcriptional upregulation of proinflammatory cytokine genes. This study identifies Nrf2 as the upstream regulator of cytokine production and establishes a molecular basis for an Nrf2-mediated anti-inflammation approach.


Nature Immunology | 2017

The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin

Takanori Hidaka; Eisaku Ogawa; Eri Kobayashi; Takafumi Suzuki; Ryo Funayama; Takeshi Nagashima; Taku Fujimura; Setsuya Aiba; Keiko Nakayama; Ryuhei Okuyama; Masayuki Yamamoto

Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.


Oxidative Medicine and Cellular Longevity | 2013

Roles Nrf2 Plays in Myeloid Cells and Related Disorders

Eri Kobayashi; Takafumi Suzuki; Masayuki Yamamoto

The Keap1-Nrf2 system protects animals from oxidative and electrophilic stresses. Nrf2 is a transcription factor that induces the expression of genes essential for detoxifying reactive oxygen species (ROS) and cytotoxic electrophiles. Keap1 is a stress sensor protein that binds to and ubiquitinates Nrf2 under unstressed conditions, leading to the rapid proteasomal degradation of Nrf2. Upon exposure to stress, Keap1 is modified and inactivated, which allows Nrf2 to accumulate and activate the transcription of a battery of cytoprotective genes. Antioxidative and detoxification activities are important for many types of cells to avoid DNA damage and cell death. Accumulating lines of recent evidence suggest that Nrf2 is also required for the primary functions of myeloid cells, which include phagocytosis, inflammation regulation, and ROS generation for bactericidal activities. In fact, results from several mouse models have shown that Nrf2 expression in myeloid cells is required for the proper regulation of inflammation, antitumor immunity, and atherosclerosis. Moreover, several molecules generated upon inflammation activate Nrf2. Although ROS detoxification mediated by Nrf2 is assumed to be required for anti-inflammation, the entire picture of the Nrf2-mediated regulation of myeloid cell primary functions has yet to be elucidated. In this review, we describe the Nrf2 inducers characteristic of myeloid cells and the contributions of Nrf2 to diseases.


Blood | 2013

Naturally occurring oncogenic GATA1 mutants with internal deletions in transient abnormal myelopoiesis in Down syndrome

Tsutomu Toki; Rika Kanezaki; Eri Kobayashi; Hiroshi Kaneko; Mikiko Suzuki; RuNan Wang; Kiminori Terui; Hirokazu Kanegane; Miho Maeda; Mikiya Endo; Tatsuki Mizuochi; Souichi Adachi; Yasuhide Hayashi; Masayuki Yamamoto; Ritsuko Shimizu; Etsuro Ito

Children with Down syndrome have an increased incidence of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia. The majority of these cases harbor somatic mutations in the GATA1 gene, which results in the loss of full-length GATA1. Only a truncated isoform of GATA1 that lacks the N-terminal 83 amino acids (GATA1-S) remains. We found through genetic studies of 106 patients with TAM that internally deleted GATA1 proteins (GATA1-IDs) lacking amino acid residues 77-119 or 74-88 (created by splicing mutations) contributed to the genesis of TAM in 6 patients. Analyses of GATA1-deficient embryonic megakaryocytic progenitors revealed that the GATA1 function in growth restriction was disrupted in GATA1-IDs. In contrast, GATA1-S promoted megakaryocyte proliferation more profoundly than that induced by GATA1 deficiency. These results indicate that the internally deleted regions play important roles in megakaryocyte proliferation and that perturbation of this mechanism is involved in the pathogenesis of TAM.


Genes to Cells | 2009

Induction of hyperproliferative fetal megakaryopoiesis by an N-terminally truncated GATA1 mutant

Ritsuko Shimizu; Eri Kobayashi; James Douglas Engel; Masayuki Yamamoto

Two GATA1‐related leukemias have been described: one is an erythroleukemia that develops in mice as a consequence of diminished expression of wild‐type GATA1, whereas the other is an acute megakaryoblastic leukemia (AMKL) that arises in Down syndrome children as a consequence of somatic N‐terminal truncation (ΔNT) of GATA1. We discovered that mice expressing the shortened GATA1 protein (ΔNTR mice) phenocopies the human transient myeloproliferative disorder (TMD) that precedes AMKL in Down syndrome children. In perinatal livers of the ΔNTR mutant mice, immature megakaryocytes accumulate massively, and this fraction contains cells that form hyperproliferative megakaryocytic colonies. Furthermore, showing good agreement with the clinical course of TMD in humans, ΔNTR mutant mice undergo spontaneous resolution from the massive megakaryocyte accumulation concomitant with the switch of hematopoietic microenvironment from liver to bone marrow/spleen. These results thus demonstrate that expression of the GATA1/Gata1 N‐terminal deletion mutant per se induces hyperproliferative fetal megakaryopoiesis. This mouse model serves as an important means to clarify how impaired GATA1 function contributes to the multi‐step leukemogenesis.


Molecular Biology of the Cell | 2013

The Rab27a effector exophilin7 promotes fusion of secretory granules that have not been docked to the plasma membrane

Hao Wang; Ray Ishizaki; Jun Xu; Kazuo Kasai; Eri Kobayashi; Hiroshi Gomi; Tetsuro Izumi

Recent microscopic recordings in living cells demonstrated that granules without prior stable docking to the plasma membrane can efficiently undergo exocytosis, although the molecular mechanism is unknown. The present report is the first to identify exophilin7 as a molecule that functions in the exocytosis of undocked granules.


Journal of Biological Chemistry | 2012

N- and C-terminal Transactivation Domains of GATA1 Protein Coordinate Hematopoietic Program

Hiroshi Kaneko; Eri Kobayashi; Masayuki Yamamoto; Ritsuko Shimizu

Background: The N-terminal transactivation domain (N-TAD) is requisite for GATA1 function in vivo. Results: The C-terminal region of GATA1 works as TAD, and fetal hematopoiesis is perturbed in the GATA1-deficient mice rescued with GATA1 lacking C-terminal TAD activity. Conclusion: GATA1 has two TADs, which differentially work. Significance: The complex nature of molecular mechanisms is underlying how GATA1 works for the maintenance of hematopoietic homeostasis. Transcription factor GATA1 regulates the expression of a cluster of genes important for hematopoietic cell differentiation toward erythroid and megakaryocytic lineages. Three functional domains have been identified in GATA1, a transactivation domain located in the N terminus (N-TAD) and two zinc finger domains located in the middle of the molecule. Although N-TAD is known as a solitary transactivation domain for GATA1, clinical observations in Down syndrome leukemia suggest that there may be additional transactivation domains. In this study, we found in reporter co-transfection assays that transactivation activity of GATA1 was markedly reduced by deletion of the C-terminal 95 amino acids without significant attenuation of the DNA binding activity or self-association potential. We therefore generated transgenic mouse lines that expressed GATA1 lacking the C-terminal region (GATA1-ΔCT). When we crossed these transgenic mouse lines to the Gata1-deficient mouse, we found that the GATA1-ΔCT transgene rescued Gata1-deficient mice from embryonic lethality. The embryos rescued with an almost similar level of GATA1-ΔCT to endogenous GATA1 developed beyond embryonic 13.5 days, showing severe anemia with accumulation of immature erythroid cells, as was the case for the embryos rescued by endogenous levels of GATA1 lacking N-TAD (GATA1-ΔNT). Distinct sets of target genes were affected in the embryos rescued by GATA1-ΔCT and GATA1-ΔNT. We also found attenuated GATA1 function in cell cycle control of immature megakaryocytes in both lines of rescued embryos. These results thus demonstrate that GATA1 has two independent transactivation domains, N-TAD and C-TAD. Both N-TAD and C-TAD retain redundant as well as specific activities for proper hematopoiesis in vivo.


Journal of Biological Chemistry | 2011

Loss of Granuphilin and Loss of Syntaxin-1A Cause Differential Effects on Insulin Granule Docking and Fusion

Hao Wang; Ray Ishizaki; Eri Kobayashi; Tomonori Fujiwara; Kimio Akagawa; Tetsuro Izumi

The Rab27 effector granuphilin/Slp4 is essential for the stable attachment (docking) of secretory granules to the plasma membrane, and it also inhibits subsequent fusion. Granuphilin is thought to mediate these processes through interactions with Rab27 on the granule membrane and with syntaxin-1a on the plasma membrane and its binding partner Munc18-1. Consistent with this hypothesis, both syntaxin-1a- and Munc18-1-deficient secretory cells, as well as granuphilin null cells, have been observed to have a deficit of docked granules. However, to date there has been no direct comparative analysis of the docking defects in those mutant cells. In this study, we morphometrically compared granule-docking states between granuphilin null and syntaxin-1a null pancreatic β cells derived from mice having the same genetic background. We found that loss of syntaxin-1a does not cause a significant granule-docking defect, in contrast to granuphilin deficiency. Furthermore, we newly generated granuphilin/syntaxin-1a double knock-out mice, characterized their phenotypes, and found that the double mutant mice represent a phenocopy of granuphilin null mice and do not represent phenotypes of syntaxin-1a null mice, including their granule-docking behavior. Because granuphilin binds to syntaxin-2 and syntaxin-3 as well as syntaxin-1a, it likely mediates granule docking through interactions with those multiple syntaxins on the plasma membrane.


Journal of Biological Chemistry | 2010

Loss of the Gata1 gene IE exon leads to variant transcript expression and the production of a GATA1 protein lacking the N-terminal domain

Eri Kobayashi; Ritsuko Shimizu; Yuko Kikuchi; Satoru Takahashi; Masayuki Yamamoto

GATA1 is essential for the differentiation of erythroid cells and megakaryocytes. The Gata1 gene is composed of multiple untranslated first exons and five common coding exons. The erythroid first exon (IE exon) is important for Gata1 gene expression in hematopoietic lineages. Because previous IE exon knockdown analyses resulted in embryonic lethality, less is understood about the contribution of the IE exon to adult hematopoiesis. Here, we achieved specific deletion of the floxed IE exon in adulthood using an inducible Cre expression system. In this conditional knock-out mouse line, the Gata1 mRNA level was significantly down-regulated in the megakaryocyte lineage, resulting in thrombocytopenia with a marked proliferation of megakaryocytes. By contrast, in the erythroid lineage, Gata1 mRNA was expressed abundantly utilizing alternative first exons. Especially, the IEb/c and newly identified IEd exons were transcribed at a level comparable with that of the IE exon in control mice. Surprisingly, in the IE-null mouse, these transcripts failed to produce full-length GATA1 protein, but instead yielded GATA1 lacking the N-terminal domain inefficiently. With low level expression of the short form of GATA1, IE-null mice showed severe anemia with skewed erythroid maturation. Notably, the hematological phenotypes of adult IE-null mice substantially differ from those observed in mice harboring conditional ablation of the entire Gata1 gene. The present study demonstrates that the IE exon is instrumental to adult erythropoiesis by regulating the proper level of transcription and selecting the correct transcription start site of the Gata1 gene.


Nature Communications | 2017

Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus

Takafumi Suzuki; Shiori Seki; Keiichiro Hiramoto; Eriko Naganuma; Eri Kobayashi; Ayaka Yamaoka; Liam Baird; Nobuyuki Takahashi; Hiroshi Sato; Masayuki Yamamoto

NF-E2-related factor-2 (Nrf2) regulates cellular responses to oxidative and electrophilic stress. Loss of Keap1 increases Nrf2 protein levels, and Keap1-null mice die of oesophageal hyperkeratosis because of Nrf2 hyperactivation. Here we show that deletion of oesophageal Nrf2 in Keap1-null mice allows survival until adulthood, but the animals develop polyuria with low osmolality and bilateral hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced aquaporin 2 levels in the kidney. Renal tubular deletion of Keap1 promotes nephrogenic diabetes insipidus features, confirming that Nrf2 activation in developing tubular cells causes a water reabsorption defect. These findings suggest that Nrf2 activity should be tightly controlled during development in order to maintain renal homeostasis. In addition, tissue-specific ablation of Nrf2 in Keap1-null mice might create useful animal models to uncover novel physiological functions of Nrf2.

Collaboration


Dive into the Eri Kobayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge