Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo Funayama is active.

Publication


Featured researches published by Ryo Funayama.


American Journal of Human Genetics | 2013

Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome.

Yoko Aoki; Tetsuya Niihori; Toshihiro Banjo; Nobuhiko Okamoto; Seiji Mizuno; Kenji Kurosawa; Tsutomu Ogata; Fumio Takada; Michihiro Yano; Toru Ando; Tadataka Hoshika; Christopher Barnett; Hirofumi Ohashi; Hiroshi Kawame; Tomonobu Hasegawa; Takahiro Okutani; Tatsuo Nagashima; Satoshi Hasegawa; Ryo Funayama; Takeshi Nagashima; Keiko Nakayama; Shin-ichi Inoue; Yusuke Watanabe; Toshihiko Ogura; Yoichi Matsubara

RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes.


Nature Communications | 2016

Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription

Eri Kobayashi; Takafumi Suzuki; Ryo Funayama; Takeshi Nagashima; Makiko Hayashi; Hiroki Sekine; Nobuyuki Tanaka; Takashi Moriguchi; Hozumi Motohashi; Keiko Nakayama; Masayuki Yamamoto

Nrf2 (NF-E2-related factor-2) transcription factor regulates oxidative/xenobiotic stress response and also represses inflammation. However, the mechanisms how Nrf2 alleviates inflammation are still unclear. Here, we demonstrate that Nrf2 interferes with lipopolysaccharide-induced transcriptional upregulation of proinflammatory cytokines, including IL-6 and IL-1β. Chromatin immunoprecipitation (ChIP)-seq and ChIP-qPCR analyses revealed that Nrf2 binds to the proximity of these genes in macrophages and inhibits RNA Pol II recruitment. Further, we found that Nrf2-mediated inhibition is independent of the Nrf2-binding motif and reactive oxygen species level. Murine inflammatory models further demonstrated that Nrf2 interferes with IL6 induction and inflammatory phenotypes in vivo. Thus, contrary to the widely accepted view that Nrf2 suppresses inflammation through redox control, we demonstrate here that Nrf2 opposes transcriptional upregulation of proinflammatory cytokine genes. This study identifies Nrf2 as the upstream regulator of cytokine production and establishes a molecular basis for an Nrf2-mediated anti-inflammation approach.


Nucleic Acids Research | 2012

Nrf2–MafG heterodimers contribute globally to antioxidant and metabolic networks

Yosuke Hirotsu; Fumiki Katsuoka; Ryo Funayama; Takeshi Nagashima; Yuichiro Nishida; Keiko Nakayama; James Douglas Engel; Masayuki Yamamoto

NF-E2-related factor 2 (Nrf2) is a key transcription factor that is critical for cellular defense against oxidative and xenobiotic insults. Nrf2 heterodimerizes with small Maf (sMaf) proteins and binds to antioxidant response elements (AREs) to activate a battery of cytoprotective genes. However, it remains unclear to what extent the Nrf2–sMaf heterodimers contribute to ARE-dependent gene regulation on a genome-wide scale. We performed chromatin immunoprecipitation coupled with high-throughput sequencing and identified the binding sites of Nrf2 and MafG throughout the genome. Compared to sites occupied by Nrf2 alone, many sites co-occupied by Nrf2 and MafG exhibit high enrichment and are located in species-conserved genomic regions. The ARE motifs were significantly enriched among the recovered Nrf2–MafG-binding sites but not among the Nrf2-binding sites that did not display MafG binding. The majority of the Nrf2-regulated cytoprotective genes were found in the vicinity of Nrf2–MafG-binding sites. Additionally, sequences that regulate glucose metabolism and several amino acid transporters were identified as Nrf2–MafG target genes, suggesting diverse roles for the Nrf2–MafG heterodimer in stress response. These data clearly support the notion that Nrf2–sMaf heterodimers are complexes that regulate batteries of genes involved in various aspects of cytoprotective and metabolic functions through associated AREs.


Journal of Human Genetics | 2016

Human genetic variation database, a reference database of genetic variations in the Japanese population

Koichiro Higasa; Noriko Miyake; Jun Yoshimura; Kohji Okamura; Tetsuya Niihori; Hirotomo Saitsu; Koichiro Doi; Masakazu Shimizu; Kazuhiko Nakabayashi; Yoko Aoki; Yoshinori Tsurusaki; Shinichi Morishita; Takahisa Kawaguchi; Osuke Migita; Keiko Nakayama; Mitsuko Nakashima; Jun Mitsui; Maiko Narahara; Keiko Hayashi; Ryo Funayama; Daisuke Yamaguchi; Hiroyuki Ishiura; Wen Ya Ko; Kenichiro Hata; Takeshi Nagashima; Ryo Yamada; Yoichi Matsubara; Akihiro Umezawa; Shoji Tsuji; Naomichi Matsumoto

Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many candidates to explain the disease phenotype are still far from being established, because the population-specific frequency spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622 previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/.


Human Molecular Genetics | 2012

Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression

Hiroaki Okae; Hitoshi Hiura; Yuichiro Nishida; Ryo Funayama; Satoshi Tanaka; Hatsune Chiba; Nobuo Yaegashi; Keiko Nakayama; Hiroyuki Sasaki; Takahiro Arima

Within the vertebrate groups, only mammals are subject to a specialized epigenetic process termed genomic imprinting in which genes are preferentially expressed from one parental allele. Imprinted expression has been reported for >100 mouse genes and, for approximately one-quarter of these genes, the imprinted expression is specific to the placenta (or extraembryonic tissues). This seemingly placenta-specific imprinted expression has garnered much attention, as has the apparent lack of conserved imprinting between the human and mouse placenta. In this study, we used a novel approach to re-investigate the placenta-specific expression using embryo transfer and trophoblast stem cells. We analyzed 20 genes previously reported to show maternal allele-specific expression in the placenta, and only 8 genes were confirmed to be imprinted. Other genes were likely to be falsely identified as imprinted due to their relatively high expression in contaminating maternal cells. Next, we performed a genome-wide transcriptome assay and identified 133 and 955 candidate imprinted genes with paternal allele- and maternal allele-specific expression. Of those we analyzed in detail, 1/6 (Gab1) of the candidates for paternal allele-specific expression and only 1/269 (Ano1) candidates for maternal allele-specific expression were authentically imprinted genes. Imprinting of Ano1 and Gab1 was specific to the placenta and neither gene displayed allele-specific promoter DNA methylation. Imprinting of ANO1, but not GAB1, was conserved in the human placenta. Our findings impose a considerable revision of the current views of placental imprinting.


PLOS ONE | 2013

Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505-3p and miR197-3p as novel biomarkers.

Masashi Ninomiya; Yasuteru Kondo; Ryo Funayama; Takeshi Nagashima; Takayuki Kogure; Eiji Kakazu; Osamu Kimura; Yoshiyuki Ueno; Keiko Nakayama; Tooru Shimosegawa

Background and Aims MicroRNAs are small endogenous RNA molecules with specific expression patterns that can serve as biomarkers for numerous diseases. However, little is known about the expression profile of serum miRNAs in PBC. Methods First, we employed Illumina deep sequencing for the initial screening to indicate the read numbers of miRNA expression in 10 PBC, 5 CH-C, 5 CH-B patients and 5 healthy controls. Comparing the differentially expressed miRNAs in the 4 groups, analysis of variance was performed on the number of sequence reads to evaluate the statistical significance. Hierarchical clustering was performed using an R platform and we have found candidates for specific miRNAs in the PBC patients. Second, a quantitative reverse transcription PCR validation study was conducted in 10 samples in each group. The expression levels of the selected miRNAs were presented as fold-changes (2−ΔΔCt). Finally, computer analysis was conducted to predict target genes and biological functions with MiRror 2.0 and DAVID v6.7. Results We obtained about 12 million 32-mer short RNA reads on average per sample and the mapping rates to miRBase were 16.60% and 81.66% to hg19. In the statistical significance testing, the expression levels of 81 miRNAs were found to be differentially expressed in the 4 groups. The heat map and hierarchical clustering demonstrated that the miRNA profiles from PBC clustered with those of CH-B, CH-C and healthy controls. Additionally, the circulating levels of hsa-miR-505-3p, 197-3p, and 500a-3p were significantly decreased in PBC compared with healthy controls and the expression levels of hsa-miR-505-3p, 139-5p and 197-3p were significantly reduced compared with the viral hepatitis group. Conclusions Our results indicate that sera from patients with PBC have a unique miRNA expression profile and that the down-regulated expression of hsa-miR-505-3p and miR-197-3p can serve as clinical biomarkers of PBC.


PLOS Genetics | 2013

Ras-Induced Changes in H3K27me3 Occur after Those in Transcriptional Activity

Masaki Hosogane; Ryo Funayama; Yuichiro Nishida; Takeshi Nagashima; Keiko Nakayama

Oncogenic signaling pathways regulate gene expression in part through epigenetic modification of chromatin including DNA methylation and histone modification. Trimethylation of histone H3 at lysine-27 (H3K27), which correlates with transcriptional repression, is regulated by an oncogenic form of the small GTPase Ras. Although accumulation of trimethylated H3K27 (H3K27me3) has been implicated in transcriptional regulation, it remains unclear whether Ras-induced changes in H3K27me3 are a trigger for or a consequence of changes in transcriptional activity. We have now examined the relation between H3K27 trimethylation and transcriptional regulation by Ras. Genome-wide analysis of H3K27me3 distribution and transcription at various times after expression of oncogenic Ras in mouse NIH 3T3 cells identified 115 genes for which H3K27me3 level at the gene body and transcription were both regulated by Ras. Similarly, 196 genes showed Ras-induced changes in transcription and H3K27me3 level in the region around the transcription start site. The Ras-induced changes in transcription occurred before those in H3K27me3 at the genome-wide level, a finding that was validated by analysis of individual genes. Depletion of H3K27me3 either before or after activation of Ras signaling did not affect the transcriptional regulation of these genes. Furthermore, given that H3K27me3 enrichment was dependent on Ras signaling, neither it nor transcriptional repression was maintained after inactivation of such signaling. Unexpectedly, we detected unannotated transcripts derived from intergenic regions at which the H3K27me3 level is regulated by Ras, with the changes in transcript abundance again preceding those in H3K27me3. Our results thus indicate that changes in H3K27me3 level in the gene body or in the region around the transcription start site are not a trigger for, but rather a consequence of, changes in transcriptional activity.


Nature Immunology | 2017

The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin

Takanori Hidaka; Eisaku Ogawa; Eri Kobayashi; Takafumi Suzuki; Ryo Funayama; Takeshi Nagashima; Taku Fujimura; Setsuya Aiba; Keiko Nakayama; Ryuhei Okuyama; Masayuki Yamamoto

Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.


Journal of Human Genetics | 2013

Exome sequencing identifies a novel TTN mutation in a family with hereditary myopathy with early respiratory failure

Rumiko Izumi; Tetsuya Niihori; Yoko Aoki; Naoki Suzuki; Masaaki Kato; Hitoshi Warita; Toshiaki Takahashi; Maki Tateyama; Takeshi Nagashima; Ryo Funayama; Koji Abe; Keiko Nakayama; Masashi Aoki; Yoichi Matsubara

Myofibrillar myopathy (MFM) is a group of chronic muscular disorders that show the focal dissolution of myofibrils and accumulation of degradation products. The major genetic basis of MFMs is unknown. In 1993, our group reported a Japanese family with dominantly inherited cytoplasmic body myopathy, which is now included in MFM, characterized by late-onset chronic progressive distal muscle weakness and early respiratory failure. In this study, we performed linkage analysis and exome sequencing on these patients and identified a novel c.90263G>T mutation in the TTN gene (NM_001256850). During the course of our study, another groups reported three mutations in TTN in patients with hereditary myopathy with early respiratory failure (HMERF, MIM #603689), which is characterized by overlapping pathologic findings with MFMs. Our patients were clinically compatible with HMERF. The mutation identified in this study and the three mutations in patients with HMERF were located on the A-band domain of titin, suggesting a strong relationship between mutations in the A-band domain of titin and HMERF. Mutation screening of TTN has been rarely carried out because of its huge size, consisting of 363 exons. It is possible that focused analysis of TTN may detect more mutations in patients with MFMs, especially in those with early respiratory failure.


American Journal of Human Genetics | 2015

Mutations in MECOM, Encoding Oncoprotein EVI1, Cause Radioulnar Synostosis with Amegakaryocytic Thrombocytopenia.

Tetsuya Niihori; Meri Ouchi-Uchiyama; Yoji Sasahara; Takashi Kaneko; Yoshiko Hashii; Masahiro Irie; Atsushi Sato; Yuka Saito-Nanjo; Ryo Funayama; Takeshi Nagashima; Shin-ichi Inoue; Keiko Nakayama; Keiichi Ozono; Shigeo Kure; Yoichi Matsubara; Masue Imaizumi; Yoko Aoki

Radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT) is an inherited bone marrow failure syndrome, characterized by thrombocytopenia and congenital fusion of the radius and ulna. A heterozygous HOXA11 mutation has been identified in two unrelated families as a cause of RUSAT. However, HOXA11 mutations are absent in a number of individuals with RUSAT, which suggests that other genetic loci contribute to RUSAT. In the current study, we performed whole exome sequencing in an individual with RUSAT and her healthy parents and identified a de novo missense mutation in MECOM, encoding EVI1, in the individual with RUSAT. Subsequent analysis of MECOM in two other individuals with RUSAT revealed two additional missense mutations. These three mutations were clustered within the 8(th) zinc finger motif of the C-terminal zinc finger domain of EVI1. Chromatin immunoprecipitation and qPCR assays of the regions harboring the ETS-like motif that is known as an EVI1 binding site showed a reduction in immunoprecipitated DNA for two EVI1 mutants compared with wild-type EVI1. Furthermore, reporter assays showed that MECOM mutations led to alterations in both AP-1- and TGF-β-mediated transcriptional responses. These functional assays suggest that transcriptional dysregulation by mutant EVI1 could be associated with the development of RUSAT. We report missense mutations in MECOM resulting in a Mendelian disorder that provide compelling evidence for the critical role of EVI1 in normal hematopoiesis and in the development of forelimbs and fingers in humans.

Collaboration


Dive into the Ryo Funayama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge