Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Hunt is active.

Publication


Featured researches published by Eric A. Hunt.


Analytical Chemistry | 2008

Bioluminescence-Based Detection of MicroRNA, miR21 in Breast Cancer Cells

Kyle A. Cissell; Yasmeen Rahimi; Suresh Shrestha; Eric A. Hunt; Sapna K. Deo

A hybridization assay for the detection of microRNA, miR21 in cancer cells using the bioluminescent enzyme Renilla luciferase (Rluc) as a label, has been developed. MicroRNAs are small RNAs found in plants, animals, and humans that perform key functions in gene silencing and affect early-stage cell development, cell differentiation, and cell death. miRNAs are considered useful early diagnostic and prognostic markers of cancer, candidates for therapeutic intervention, and targets for basic biomedical research. However, methods for highly sensitive and rapid detection of miRNA directly from samples such as cells that can serve as a suitable diagnostics platform are lacking. In that regard, the utilization of the bioluminescent label, Rluc, that offers the advantage of high signal-to-noise ratio, allows for the development of highly sensitive assays for the determination of miRNA in a variety of matrixes. In this paper, we have described the development of a competitive oligonucleotide hybridization assay for the detection of miR21 using the free miR21 and Rluc-labeled miR21 that competes to bind to an immobilized miR21 complementary probe. The miR21 microRNA chosen for this study is of biomedical significance because its levels are elevated in a variety of cancers. Using the optimized assay, a detection limit of 1 fmol was obtained. The assay was employed for the detection of miR21 in human breast adenocarcinoma MCF-7 cells and nontumorigenic epithelial MCF-10A cells. The comparison of miR21 expression level in two cell lines demonstrated higher expression of miR21 in breast cancer cell line MCF-7 compared to the nontumorigenic MCF-10A cells. Further, using the assay developed, the miR21 quantification could be performed directly in cell extracts. The hybridization assay was developed in a microplate format with a total assay time of 1.5 h and without the need for sample PCR amplification. The need for early molecular markers and their detection methods in cancer diagnosis is tremendous. The characteristics of the assay developed in this work show its suitability for early cancer diagnosis based on miRNA as a biomarker.


Analytical Biochemistry | 2009

Direct detection and quantification of microRNAs

Eric A. Hunt; Ann M. Goulding; Sapna K. Deo

The recent discovery of the potent regulatory nature of microRNAs (miRNAs), a relatively new class of approximately 22 nucleotide RNAs, has made them a primary focus in today’s biochemical and medical research. The relationship between miRNA expression patterns and the onset of cancer, as well as other diseases, has glimpsed the potential of miRNAs as disease biomarkers or drug targets, making them a primary research focus. Their promising future in medicine is hinged upon improving our scientific understanding of their intricate regulatory mechanisms. In the realm of analytical chemistry, the main challenge associated with miRNA is its detection. Their extremely small size and low cellular concentration poses many challenges for achieving reliable results. Current reviews in this area have focused on adaptations to microarray, PCR, and Northern blotting procedures to make them suitable for miRNA detection. While these are extremely powerful methods and accepted as the current standards, they are typically very laborious, semi-quantitative, and often require expensive imaging equipment and/or radioactive/toxic labels. This review aims to highlight emerging techniques in miRNA detection and quantification that exhibit superior flexibility and adaptability as well as matched or increased sensitivity in comparison to the current standards. Specifically, this review will cover colorimetric, fluorescence, bioluminescence, enzyme, and electrochemical based methods, which drastically reduce procedural complexity and overall expense of operation thereby increasing the accessibility of this field of research. The methods are presented and discussed as to their improvements over current standard methods as well as their potential complications preventing acceptance as standard procedures. These new methods have addressed the many of the problems associated with miRNA detection through the employment of enzyme-based signal amplification, enhanced hybridization conditions using PNA capture probes, highly sensitive and flexible forms of spectroscopy, and extremely responsive electrocatalytic nanosystems, among other approaches.


Reviews in Analytical Chemistry | 2015

MicroRNA Detection: Current Technology and Research Strategies

Eric A. Hunt; David Broyles; Trajen Head; Sapna K. Deo

The relatively new field of microRNA (miR) has experienced rapid growth in methodology associated with its detection and bioanalysis as well as with its role in -omics research, clinical diagnostics, and new therapeutic strategies. The breadth of this area of research and the seemingly exponential increase in number of publications on the subject can present scientists new to the field with a daunting amount of information to evaluate. This review aims to provide a collective overview of miR detection methods by relating conventional, established techniques [such as quantitative reverse transcription polymerase chain reaction (RT-qPCR), microarray, and Northern blotting (NB)] and relatively recent advancements [such as next-generation sequencing (NGS), highly sensitive biosensors, and computational prediction of microRNA/targets] to common miR research strategies. This should guide interested readers toward a more focused study of miR research and the surrounding technology.


Protein Engineering Design & Selection | 2008

Red fluorescent protein variants with incorporated non-natural amino acid analogues

Ann M. Goulding; Suresh Shrestha; Karl J. Dria; Eric A. Hunt; Sapna K. Deo

Fluorescent proteins are important tools in biotechnology applications and biosensing. DsRed, a red fluorescent protein, has expanded the colors of fluorescent proteins beyond the more commonly used green fluorescent protein. Many genetic modifications have been performed on DsRed to overcome some of its drawbacks. These primarily focused on overcoming the oligomerization detrimental to DsRed activity, and the parasitic green fluorescence caused by the immature chromophore. One such variant, DsRed-monomer, has minimal green fluorescence and no oligomerization. A few traditional mutagenesis studies have been done with DsRed and its mutants to shift the fluorescence wavelengths creating additions to the pallet of fluorescent protein colors. We have explored incorporation of non-natural amino acid analogues into DsRed-Monomer, obtaining variants with differing emission properties. In this work, two such analogues of tyrosine have been incorporated into DsRed-Monomer: 3-amino-l-tyrosine and 3-fluoro-l-tyrosine. Tyrosine analogues were chosen due to the role of tyrosine in the formation and structure of the proteins chromophore. The variants obtained in our study showed altered emission wavelengths and spectral characteristics. Our study demonstrates that incorporation of non-natural analogues into DsRed-Monomer is a viable approach to alter the spectral characteristics of the protein. We envision that this study will open up the door to non-natural mutagenesis studies with red fluorescent proteins and its mutants.


Analytical and Bioanalytical Chemistry | 2009

Resonance energy transfer methods of RNA detection

Kyle A. Cissell; Eric A. Hunt; Sapna K. Deo

Quantitation of RNA is important in diagnostics, environmental science, and basic biomedical research. RNA is considered a signature for pathogen identification, and its expression profile is linked with disease pathogenesis, allowing for biomarker identification. RNA-based diagnostics is an emerging field of research. This expansion of interest in studying RNA has generated demand for its accurate and sensitive detection. Several methods have therefore been developed to detect RNA. Resonance energy transfer methods of RNA detection are highly promising in terms of simplicity and high sensitivity. In this review, we have focused on the latest developments in resonance energy transfer methods of RNA detection that utilize various probe designs. The probe designs discussed here are molecular beacons, quenched autoligation probes, and linear oligonucleotide probes. Resonance energy transfer methods based on both fluorescence and bioluminescence detection are discussed.


Chemical Communications | 2011

Bioluminescent stem-loop probes for highly sensitive nucleic acid detection

Eric A. Hunt; Sapna K. Deo

Here, we report the first bioluminescent stem-loop probe, which is 50 times more sensitive and able to achieve a LOD 25 times lower than fluorescent stem-loop probes. Chemical generation of a signal from Renilla luciferase reduces background noise for improved quantitative utility in nucleic acid biomarker detection.


Scientific Reports | 2016

Truncated Variants of Gaussia Luciferase with Tyrosine Linker for Site-Specific Bioconjugate Applications.

Eric A. Hunt; Angeliki Moutsiopoulou; Stephanie Ioannou; Katelyn Ahern; Kristen Woodward; Emre Dikici; Sylvia Daunert; Sapna K. Deo

Gaussia luciferase (Gluc)—with its many favorable traits such as small size, bright emission, and exceptional stability—has become a prominent reporter protein for a wide range of bioluminescence-based detection applications. The ten internal cysteine residues crucial to functional structure formation, however, make expression of high quantities of soluble protein in bacterial systems difficult. In addition to this challenge, the current lack of structural data further complicates the use of Gluc for in vitro applications, such as biosensors, or cellular delivery, both of which rely heavily on robust and reproducible bioconjugation techniques. While Gluc is already appreciably small for a luciferase, a reduction in size that still retains significant bioluminescent activity, in conjunction with a more reproducible bioorthogonal method of chemical modification and facile expression in bacteria, would be very beneficial in biosensor design and cellular transport studies. We have developed truncated variants of Gluc, which maintain attractive bioluminescent features, and have characterized their spectral and kinetic properties. These variants were purified in high quantities from a bacterial system. Additionally, a C-terminal linker has been incorporated into these variants that can be used for reliable, specific modification through tyrosine-based bioconjugation techniques, which leave the sensitive network of cysteine residues undisturbed.


Bioconjugate Chemistry | 2017

Bioorthogonal Protein Conjugation: Application to the Development of a Highly Sensitive Bioluminescent Immunoassay for the Detection of Interferon-γ

Angeliki Moutsiopoulou; Eric A. Hunt; David Broyles; Christie Ataides Pereira; Kristen Woodward; Emre Dikici; Angel Kaifer; Sylvia Daunert; Sapna K. Deo

Bioorthogonal conjugation eliminates the shortcomings of classical conjugation methods. The conjugation of antibodies to reporter proteins, such as bioluminescent protein, can be controlled with orthogonal conjugation methods. Here we report a bioluminescent immunoassay for the sensitive detection of interferon-γ (IFN-γ) that utilizes orthogonal conjugation of bioluminescent protein, Gaussia luciferase to anti-IFN-γ antibody. The IFN-γ is produced by the immune system and the detection of the IFN-γ is pivotal for the detection of persistent viral and bacterial infections. A bioorthogonal conjugation approach is used to conjugate an anti-IFN-γ antibody with a GLuc mutant containing the N-terminal tyrosine using formylbenzene diazonium hexafluorophosphate reagent (FBDP) in hydrophilic mild pH environment yielding high conjugation efficiency (60%). This reagent is shown to be specific for tyrosine (Tyr) residues. Therefore, conjugation through Tyr was orthogonal and not detrimental to the bioluminescence activity of GLuc. The immunoassay described in this paper is a sandwich type assay and involves a capture and a detection antibody. The assay was validated for its robustness, precision, accuracy, limit of detection, and recovery.


Analyst | 2017

A paper-based platform for detection of viral RNA

Daohong Zhang; David Broyles; Eric A. Hunt; Emre Dikici; Sylvia Daunert; Sapna K. Deo


Analytical Biochemistry | 2016

Design and development of high bioluminescent resonance energy transfer efficiency hybrid-imaging constructs

Manoj Kumar; Letícia Kovalski; David Broyles; Eric A. Hunt; Pirouz Daftarian; Emre Dikici; Sylvia Daunert; Sapna K. Deo

Collaboration


Dive into the Eric A. Hunt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge