Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emre Dikici is active.

Publication


Featured researches published by Emre Dikici.


Reviews in Analytical Chemistry | 2011

Bioluminescence and Its Impact on Bioanalysis

Daniel Scott; Emre Dikici; Mark Ensor; Sylvia Daunert

There is an increasing need for versatile yet sensitive labels, posed by the demands for low detection in bioanalysis. Bioluminescent proteins have many desirable characteristics, including the ability to be detected at extremely low concentrations; no background interference from autofluorescent compounds present in samples; and compatibility with many miniaturized platforms, such as lab-on-a-chip and lab-on-a-CD systems. Bioluminescent proteins have found a plethora of analytical applications in intracellular monitoring, genetic regulation and detection, immuno- and binding assays, and whole-cell biosensors, among others. As new bioluminescent organisms are discovered and new bioluminescence proteins are characterized, use of these proteins will continue to dramatically improve our understanding of molecular and cellular events, as well as their applications for detection of environmental and biomedical samples.


Analytical Chemistry | 2009

Engineering Bioluminescent Proteins: Expanding their Analytical Potential

Laura Rowe; Emre Dikici; Sylvia Daunert

Bioluminescent proteins are used in a plethora of analytical methods, from ultrasensitive assay development to the in vivo imaging of cellular processes. This article reviews the most pertinent current bioluminescent-protein-based technologies and suggests the future direction of this vein of research. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).


Protein Engineering Design & Selection | 2009

Aequorin variants with improved bioluminescence properties

Emre Dikici; Xiaoge Qu; Laura Rowe; L. Millner; C. Logue; Sapna K. Deo; Mark Ensor; Sylvia Daunert

The photoprotein aequorin has been widely used as a bioluminescent label in immunoassays, for the determination of calcium concentrations in vivo, and as a reporter in cellular imaging. It is composed of apoaequorin (189 amino acid residues), the imidazopyrazine chromophore coelenterazine and molecular oxygen. The emission characteristics of aequorin can be changed by rational design of the protein to introduce mutations in its structure, as well as by substituting different coelenterazine analogues to yield semi-synthetic aequorins. Variants of aequorin were created by mutating residues His16, Met19, Tyr82, Trp86, Trp108, Phe113 and Tyr132. Forty-two aequorin mutants were prepared and combined with 10 different coelenterazine analogues in a search for proteins with different emission wavelengths, altered decay kinetics and improved stability. This spectral tuning strategy resulted in semi-synthetic photoprotein mutants with significantly altered bioluminescent properties.


The Journal of Infectious Diseases | 2013

A Targeted and Adjuvanted Nanocarrier Lowers the Effective Dose of Liposomal Amphotericin B and Enhances Adaptive Immunity in Murine Cutaneous Leishmaniasis

Pirouz Daftarian; Geoffrey W. Stone; Letícia Kovalski; Manoj Kumar; Aram Vosoughi; Maitee Urbieta; Patricia Blackwelder; Emre Dikici; Paolo Serafini; Stephanie Duffort; Richard Boodoo; Alhelí Rodríguez-Cortés; Vance Lemmon; Sapna K. Deo; Jordi Alberola; Victor L. Perez; Sylvia Daunert; Arba L. Ager

BACKGROUND Amphotericin B (AmB), the most effective drug against leishmaniasis, has serious toxicity. As Leishmania species are obligate intracellular parasites of antigen presenting cells (APC), an immunopotentiating APC-specific AmB nanocarrier would be ideally suited to reduce the drug dosage and regimen requirements in leishmaniasis treatment. Here, we report a nanocarrier that results in effective treatment shortening of cutaneous leishmaniasis in a mouse model, while also enhancing L. major specific T-cell immune responses in the infected host. METHODS We used a Pan-DR-binding epitope (PADRE)-derivatized-dendrimer (PDD), complexed with liposomal amphotericin B (LAmB) in an L. major mouse model and analyzed the therapeutic efficacy of low-dose PDD/LAmB vs full dose LAmB. RESULTS PDD was shown to escort LAmB to APCs in vivo, enhanced the drug efficacy by 83% and drug APC targeting by 10-fold and significantly reduced parasite burden and toxicity. Fortuitously, the PDD immunopotentiating effect significantly enhanced parasite-specific T-cell responses in immunocompetent infected mice. CONCLUSIONS PDD reduced the effective dose and toxicity of LAmB and resulted in elicitation of strong parasite specific T-cell responses. A reduced effective therapeutic dose was achieved by selective LAmB delivery to APC, bypassing bystander cells, reducing toxicity and inducing antiparasite immunity.


ACS central science | 2017

Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications

Suzana Hamdan; Irena Pastar; Stefan Drakulich; Emre Dikici; Marjana Tomic-Canic; Sapna K. Deo; Sylvia Daunert

The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. A number of engineered nanotechnologies have been proposed demonstrating unique properties and multiple functions that address specific problems associated with wound repair mechanisms. In this outlook, we highlight the most recently developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment, with emphasis on chronic cutaneous wounds. Herein we explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.


PLOS ONE | 2016

Red-Shifted Aequorin Variants Incorporating Non-Canonical Amino Acids: Applications in In Vivo Imaging

Kristen Marie Grinstead; Laura Rowe; Charles Mark Ensor; Smita Joel; Pirouz Daftarian; Emre Dikici; Jean Marc Zingg; Sylvia Daunert

The increased importance of in vivo diagnostics has posed new demands for imaging technologies. In that regard, there is a need for imaging molecules capable of expanding the applications of current state-of-the-art imaging in vivo diagnostics. To that end, there is a desire for new reporter molecules capable of providing strong signals, are non-toxic, and can be tailored to diagnose or monitor the progression of a number of diseases. Aequorin is a non-toxic photoprotein that can be used as a sensitive marker for bioluminescence in vivo imaging. The sensitivity of aequorin is due to the fact that bioluminescence is a rare phenomenon in nature and, therefore, it does not suffer from autofluorescence, which contributes to background emission. Emission of bioluminescence in the blue-region of the spectrum by aequorin only occurs when calcium, and its luciferin coelenterazine, are bound to the protein and trigger a biochemical reaction that results in light generation. It is this reaction that endows aequorin with unique characteristics, making it ideally suited for a number of applications in bioanalysis and imaging. Herein we report the site-specific incorporation of non-canonical or non-natural amino acids and several coelenterazine analogues, resulting in a catalog of 72 cysteine-free, aequorin variants which expand the potential applications of these photoproteins by providing several red-shifted mutants better suited to use in vivo. In vivo studies in mouse models using the transparent tissue of the eye confirmed the activity of the aequorin variants incorporating L-4-iodophehylalanine and L-4-methoxyphenylalanine after injection into the eye and topical addition of coelenterazine. The signal also remained localized within the eye. This is the first time that aequorin variants incorporating non-canonical amino acids have shown to be active in vivo and useful as reporters in bioluminescence imaging.


Scientific Reports | 2016

Truncated Variants of Gaussia Luciferase with Tyrosine Linker for Site-Specific Bioconjugate Applications.

Eric A. Hunt; Angeliki Moutsiopoulou; Stephanie Ioannou; Katelyn Ahern; Kristen Woodward; Emre Dikici; Sylvia Daunert; Sapna K. Deo

Gaussia luciferase (Gluc)—with its many favorable traits such as small size, bright emission, and exceptional stability—has become a prominent reporter protein for a wide range of bioluminescence-based detection applications. The ten internal cysteine residues crucial to functional structure formation, however, make expression of high quantities of soluble protein in bacterial systems difficult. In addition to this challenge, the current lack of structural data further complicates the use of Gluc for in vitro applications, such as biosensors, or cellular delivery, both of which rely heavily on robust and reproducible bioconjugation techniques. While Gluc is already appreciably small for a luciferase, a reduction in size that still retains significant bioluminescent activity, in conjunction with a more reproducible bioorthogonal method of chemical modification and facile expression in bacteria, would be very beneficial in biosensor design and cellular transport studies. We have developed truncated variants of Gluc, which maintain attractive bioluminescent features, and have characterized their spectral and kinetic properties. These variants were purified in high quantities from a bacterial system. Additionally, a C-terminal linker has been incorporated into these variants that can be used for reliable, specific modification through tyrosine-based bioconjugation techniques, which leave the sensitive network of cysteine residues undisturbed.


PLOS ONE | 2016

Directing and Potentiating Stem Cell-Mediated Angiogenesis and Tissue Repair by Cell Surface E-Selectin Coating.

Zhao Jun Liu; Pirouz Daftarian; Letícia Kovalski; Bo Wang; Runxia Tian; Diego M. Castilla; Emre Dikici; Victor L. Perez; Sapna K. Deo; Sylvia Daunert; Omaida C. Velazquez

Stem cell therapy has emerged as a promising approach for treatment of a number of diseases, including delayed and non-healing wounds. However, targeted systemic delivery of therapeutic cells to the dysfunctional tissues remains one formidable challenge. Herein, we present a targeted nanocarrier-mediated cell delivery method by coating the surface of the cell to be delivered with dendrimer nanocarriers modified with adhesion molecules. Infused nanocarrier-coated cells reach to destination via recognition and association with the counterpart adhesion molecules highly or selectively expressed on the activated endothelium in diseased tissues. Once anchored on the activated endothelium, nanocarriers-coated transporting cells undergo transendothelial migration, extravasation and homing to the targeted tissues to execute their therapeutic role. We now demonstrate feasibility, efficacy and safety of our targeted nanocarrier for delivery of bone marrow cells (BMC) to cutaneous wound tissues and grafted corneas and its advantages over conventional BMC transplantation in mouse models for wound healing and neovascularization. This versatile platform is suited for targeted systemic delivery of virtually any type of therapeutic cell.


Analytical and Bioanalytical Chemistry | 2008

A whole-cell assay for the high throughput screening of calmodulin antagonists

Emre Dikici; Sapna K. Deo; Sylvia Daunert

Cell-based screening systems for pharmaceuticals are desired over molecular biosensing systems because of the information they provide on toxicity and bioavailability. However, the majority of sensing systems developed are molecular biosensing type screening systems and cannot be easily adapted to cell-based screening. In this study, we demonstrate that protein-based molecular sensing systems that employ a fluorescent protein as a signal transducer are amenable to cell-based sensing by expressing the protein molecular sensing system in the cell and employing these cells for screening of desired molecules. To achieve this, we expressed a molecular sensing system based on the fusion protein of calmodulin (CaM) and enhanced green fluorescent protein (EGFP) in bacterial cells, and utilized these cells for the screening of CaM antagonists. In the presence of Ca2+, CaM undergoes a conformational change exposing a hydrophobic pocket that interacts with CaM-binding proteins, peptides, and drugs. This conformational change induced in CaM leads to a change in the microenvironment of EGFP, resulting in a change in its fluorescence intensity. The observed change in fluorescence intensity of EGFP can be correlated to the concentration of the analyte present in the sample. Dose-response curves for various tricyclic antidepressants were generated using cells containing CaM-EGFP fusion protein. Additionally, we demonstrate the versatility of our system for studying protein-protein interactions by using cells to study the binding of a peptide to CaM. The study showed that the CaM-EGFP fusion protein within the intact cells responds similarly to that of the isolated fusion protein, hence eliminating the need for any isolation and purification steps. We have demonstrated that this system can be used for the rapid screening of various CaM antagonists that are potential antipsychotic drugs.


Nature Chemical Biology | 2009

Fluorescent timers shine a light on protein trafficking

Emre Dikici; Sylvia Daunert

Monomeric fluorescent proteins that change their emission characteristics as they mature have been successfully used to study the spatial and temporal dynamics of lysosome-associated membrane protein type 2A. This methodology provides a new means of studying cellular events in a dynamic mode.

Collaboration


Dive into the Emre Dikici's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Rowe

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Mark Ensor

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoge Qu

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge