Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Kort is active.

Publication


Featured researches published by Eric A. Kort.


Science | 2014

Methane Leaks from North American Natural Gas Systems

Adam R. Brandt; Garvin Heath; Eric A. Kort; F. O'Sullivan; Gabrielle Pétron; S. M. Jordaan; Pieter P. Tans; John M. Wilcox; A. M. Gopstein; Doug Arent; S. C. Wofsy; N. J. Brown; R. Bradley; Galen D. Stucky; D. Eardley; R. Harriss

Methane emissions from U.S. and Canadian natural gas systems appear larger than official estimates. Natural gas (NG) is a potential “bridge fuel” during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity (1–3). Also, global atmospheric CH4 concentrations are on the rise, with the causes still poorly understood (4).


Applied Physics Letters | 2006

Plasmonic laser antenna

Ertugrul Cubukcu; Eric A. Kort; Kenneth B. Crozier; Federico Capasso

The authors have demonstrated a surface plasmon device composed of a resonant optical antenna integrated on the facet of a commercial diode laser, termed a plasmonic laser antenna. This device generates enhanced and spatially confined optical near fields. Spot sizes of a few tens of nanometers have been measured at a wavelength ∼0.8μm. This device can be implemented in a wide variety of semiconductor lasers emitting in spectral regions ranging from the visible to the far infrared, including quantum cascade lasers. It is potentially useful in many applications including near-field optical microscopes, optical data storage, and heat-assisted magnetic recording.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Anthropogenic emissions of methane in the United States

Scot M. Miller; Steven C. Wofsy; Anna M. Michalak; Eric A. Kort; Arlyn E. Andrews; Sebastien Biraud; E. J. Dlugokencky; Janusz Eluszkiewicz; Marc L. Fischer; Greet Janssens-Maenhout; B. R. Miller; J. B. Miller; Stephen A. Montzka; Thomas Nehrkorn; Colm Sweeney

Significance Successful regulation of greenhouse gas emissions requires knowledge of current methane emission sources. Existing state regulations in California and Massachusetts require ∼15% greenhouse gas emissions reductions from current levels by 2020. However, government estimates for total US methane emissions may be biased by 50%, and estimates of individual source sectors are even more uncertain. This study uses atmospheric methane observations to reduce this level of uncertainty. We find greenhouse gas emissions from agriculture and fossil fuel extraction and processing (i.e., oil and/or natural gas) are likely a factor of two or greater than cited in existing studies. Effective national and state greenhouse gas reduction strategies may be difficult to develop without appropriate estimates of methane emissions from these source sectors. This study quantitatively estimates the spatial distribution of anthropogenic methane sources in the United States by combining comprehensive atmospheric methane observations, extensive spatial datasets, and a high-resolution atmospheric transport model. Results show that current inventories from the US Environmental Protection Agency (EPA) and the Emissions Database for Global Atmospheric Research underestimate methane emissions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our study indicates that emissions due to ruminants and manure are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane source estimates is particularly pronounced in the south-central United States, where we find total emissions are ∼2.7 times greater than in most inventories and account for 24 ± 3% of national emissions. The spatial patterns of our emission fluxes and observed methane–propane correlations indicate that fossil fuel extraction and refining are major contributors (45 ± 13%) in the south-central United States. This result suggests that regional methane emissions due to fossil fuel extraction and processing could be 4.9 ± 2.6 times larger than in EDGAR, the most comprehensive global methane inventory. These results cast doubt on the US EPA’s recent decision to downscale its estimate of national natural gas emissions by 25–30%. Overall, we conclude that methane emissions associated with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts than indicated by existing inventories.


Science | 2013

Enhanced seasonal exchange of CO2 by northern ecosystems since 1960.

Heather Graven; Ralph F. Keeling; Stephen C. Piper; Prabir K. Patra; Britton B. Stephens; S. C. Wofsy; Lisa R. Welp; Colm Sweeney; Pieter P. Tans; J. J. Kelley; Bruce C. Daube; Eric A. Kort; Gregory W. Santoni; J. D. Bent

Downs and Ups Every spring, the concentration of CO2 in the atmosphere of the Northern Hemisphere decreases as terrestrial vegetation grows, and every fall, CO2 rises as vegetation dies and rots. Climate change has destabilized the seasonal cycle of atmospheric CO2 such that Graven et al. (p. 1085, published online 8 August; see the Perspective by Fung) have found that the amplitude of the seasonal cycle has exceeded 50% at some latitudes. The only way to explain this increase is if extratropical land ecosystems are growing and shrinking more than they did half a century ago, as a result of changes in the structure and composition of northern ecosystems. The amplitude of the seasonal cycle of carbon dioxide in high northern latitudes has increased by 50% since 1960. [Also see Perspective by Fung] Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45° to 90°N but by less than 25% for 10° to 45°N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.


Geophysical Research Letters | 2008

Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations

Eric A. Kort; Janusz Eluszkiewicz; Britton B. Stephens; J. B. Miller; Christoph Gerbig; Thomas Nehrkorn; Bruce C. Daube; Jed O. Kaplan; Sander Houweling; Steven C. Wofsy

Reference ARVE-ARTICLE-2009-003doi:10.1029/2008GL034031View record in Web of Science Record created on 2009-04-22, modified on 2016-08-08


Geophysical Research Letters | 2012

Space-based observations of megacity carbon dioxide

Eric A. Kort; Christian Frankenberg; Charles E. Miller; Tom Oda

Urban areas now house more than half the worlds population, and are estimated to contribute over 70% of global energy-related CO_2 emissions. Many cities have emission reduction policies in place, but lack objective, observation-based methods for verifying their outcomes. Here we demonstrate the potential of satellite-borne instruments to provide accurate global monitoring of megacity CO_2 emissions using GOSAT observations of column averaged CO_2 dry air mole fraction (X_(CO_2)) collected over Los Angeles and Mumbai. By differencing observations over the megacity with those in nearby background, we observe robust, statistically significant X_(CO_2) enhancements of 3.2 ± 1.5 ppm for Los Angeles and 2.4 ± 1.2 ppm for Mumbai, and find these enhancements can be exploited to track anthropogenic emission trends over time. We estimate that X_(CO_2) changes as small as 0.7 ppm in Los Angeles, corresponding to a 22% change in emissions, could be detected with GOSAT at the 95% confidence level.


Environmental Science & Technology | 2012

On the Sources of Methane to the Los Angeles Atmosphere

Paul O. Wennberg; Wilton Mui; Debra Wunch; Eric A. Kort; D. R. Blake; Elliot Atlas; Gregory W. Santoni; Steven C. Wofsy; Glenn S. Diskin; Seongeun Jeong; Marc L. Fischer

We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH(4)) emitted into Californias South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH(4) emissions are 0.44 ± 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH(4)), ethane (C(2)H(6)), and carbon monoxide (CO), together with measured C(2)H(6) to CH(4) enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C(2)H(6) to CH(4) ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C(2)H(6) is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 ± 0.15 Tg yr(-1)) of the excess CH(4) in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C(2)H(6) in the region. In particular, emissions of C(2)H(6) (and CH(4)) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH(4) emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.


Environmental Science & Technology | 2015

Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region

Anna Karion; Colm Sweeney; Eric A. Kort; Paul B. Shepson; Alan Brewer; Maria O. L. Cambaliza; Stephen Conley; Kenneth J. Davis; Aijun Deng; Mike Hardesty; Scott C. Herndon; Thomas Lauvaux; Tegan N. Lavoie; David R. Lyon; Tim Newberger; Gabrielle Pétron; Chris W. Rella; Mackenzie L. Smith; Sonja Wolter; Tara I. Yacovitch; Pieter P. Tans

We present estimates of regional methane (CH4) emissions from oil and natural gas operations in the Barnett Shale, Texas, using airborne atmospheric measurements. Using a mass balance approach on eight different flight days in March and October 2013, the total CH4 emissions for the region are estimated to be 76 ± 13 × 10(3) kg hr(-1) (equivalent to 0.66 ± 0.11 Tg CH4 yr(-1); 95% confidence interval (CI)). We estimate that 60 ± 11 × 10(3) kg CH4 hr(-1) (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate agrees with the U.S. Environmental Protection Agency (EPA) estimate for nationwide CH4 emissions from the natural gas sector when scaled by natural gas production, but it is higher than emissions reported by the EDGAR inventory or by industry to EPAs Greenhouse Gas Reporting Program. This study is the first to show consistency between mass balance results on so many different days and in two different seasons, enabling better quantification of the related uncertainty. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production.


Geophysical Research Letters | 2014

Four corners: The largest US methane anomaly viewed from space

Eric A. Kort; Christian Frankenberg; Keeley Rochelle Costigan; Rodica Lindenmaier; Manvendra K. Dubey; Debra Wunch

Methane (CH4) is a potent greenhouse gas and ozone precursor. Quantifying methane emissions is critical for projecting and mitigating changes to climate and air quality. Here we present CH4 observations made from space combined with Earth-based remote sensing column measurements. Results indicate the largest anomalous CH4 levels viewable from space over the conterminous U.S. are located at the Four Corners region in the Southwest U.S. Emissions exceeding inventory estimates, totaling 0.59 Tg CH4/yr [0.50–0.67; 2σ], are necessary to bring high-resolution simulations and observations into agreement. This underestimated source approaches 10% of the EPA estimate of total U.S. CH4 emissions from natural gas. The persistence of this CH4 signal from 2003 onward indicates that the source is likely from established gas, coal, and coalbed methane mining and processing. This work demonstrates that space-based observations can identify anomalous CH4 emission source regions and quantify their emissions with the use of a transport model.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Reconciling divergent estimates of oil and gas methane emissions

Daniel Zavala-Araiza; David R. Lyon; Ramón A. Alvarez; Kenneth J. Davis; Robert C. Harriss; Scott C. Herndon; Anna Karion; Eric A. Kort; Brian K. Lamb; Xin Lan; Anthony J. Marchese; Stephen W. Pacala; Allen L. Robinson; Paul B. Shepson; Colm Sweeney; Robert W. Talbot; Amy Townsend-Small; Tara I. Yacovitch; Daniel Zimmerle; Steven P. Hamburg

Significance Past studies reporting divergent estimates of methane emissions from the natural gas supply chain have generated conflicting claims about the full greenhouse gas footprint of natural gas. Top-down estimates based on large-scale atmospheric sampling often exceed bottom-up estimates based on source-based emission inventories. In this work, we reconcile top-down and bottom-up methane emissions estimates in one of the country’s major natural gas production basins using easily replicable measurement and data integration techniques. These convergent emissions estimates provide greater confidence that we can accurately characterize the sources of emissions, including the large impact that a small proportion of high-emitters have on total emissions and determine the implications for mitigation. Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency’s Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.

Collaboration


Dive into the Eric A. Kort's collaboration.

Top Co-Authors

Avatar

Colm Sweeney

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Frankenberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Peischl

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Conley

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge