Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Muller is active.

Publication


Featured researches published by Eric A. Muller.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Ultrabroadband infrared nanospectroscopic imaging.

Hans A. Bechtel; Eric A. Muller; Robert L. Olmon; Michael C. Martin; Markus B. Raschke

Significance Through direct measurement of intrinsic vibrational and electronic modes, infrared spectroscopy provides label-free, chemical characterization of molecules and solids. The long micrometer-sized wavelength of infrared light, however, has limited the application of this widely applied spectroscopic technique to ensemble studies, preventing nanoscale spatially resolved spectroscopy of heterogeneous materials. We overcome this limitation by combining scattering-scanning near-field optical microscopy with broadband infrared synchrotron radiation. Using this synchrotron infrared nanospectroscopy (SINS) technique, we achieve spectroscopic imaging over the entire midinfrared with nanometer spatial resolution and high sensitivity. With a spatial resolution 100–1,000 times better than conventional FTIR microscopy, SINS enables the investigation of nanoscale phenomena in soft matter, even under ambient and environmental conditions that are essentially inaccessible by other techniques. Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity.


Journal of Physical Chemistry Letters | 2015

Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales.

Eric A. Muller; Benjamin Pollard; Markus B. Raschke

This Perspective highlights recent advances in infrared vibrational chemical nano-imaging. In its implementations of scattering scanning near-field optical microscopy (s-SNOM) and photothermal-induced resonance (PTIR), IR nanospectroscopy provides few-nanometer spatial resolution for the investigation of polymer, biomaterial, and related soft-matter surfaces and nanostructures. Broad-band IR s-SNOM with coherent laser and synchrotron sources allows for chemical recognition with small-ensemble sensitivity and the potential for sensitivity reaching the single-molecule limit. Probing selected vibrational marker resonances, it gives access to nanoscale chemical imaging of composition, domain morphologies, order/disorder, molecular orientation, or crystallographic phases. Local intra- and intermolecular coupling can be measured through frequency shifts of a vibrational marker in heterogeneous environments and associated inhomogeneities in vibrational dephasing. In combination with ultrafast spectroscopy, the vibrational coherent evolution of homogeneous sub-ensembles coupled to their environment can be observed. Outstanding challenges are discussed in terms of extensions to coherent and multidimensional spectroscopies, implementation in liquid and in situ environments, general sample limitations, and engineering s-SNOM scanning probes to better control the nano-localized optical excitation and to increase sensitivity.


Nature Communications | 2014

Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics

Benjamin Pollard; Eric A. Muller; Karsten Hinrichs; Markus B. Raschke

Molecular self-assembly, the function of biomembranes and the performance of organic solar cells rely on nanoscale molecular interactions. Understanding and control of such materials have been impeded by difficulties in imaging their properties with the desired nanometre spatial resolution, attomolar sensitivity and intermolecular spectroscopic specificity. Here we implement vibrational scattering-scanning near-field optical microscopy with high spectral precision to investigate the structure–function relationship in nano-phase separated block copolymers. A vibrational resonance is used as a sensitive reporter of the local chemical environment and we image, with few nanometre spatial resolution and 0.2 cm−1 spectral precision, solvatochromic Stark shifts and line broadening correlated with molecular-scale morphologies. We discriminate local variations in electric fields between nano-domains with quantitative agreement with dielectric continuum models. This ability to directly resolve nanoscale morphology and associated intermolecular interactions can form a basis for the systematic control of functionality in multicomponent soft matter systems.


Journal of the American Chemical Society | 2013

Nano-chemical infrared imaging of membrane proteins in lipid bilayers.

Samuel Berweger; Duc M. Nguyen; Eric A. Muller; Hans A. Bechtel; Thomas T. Perkins; Markus B. Raschke

The spectroscopic characterization of biomolecular structures requires nanometer spatial resolution and chemical specificity. We perform full spatio-spectral imaging of dried purple membrane patches purified from Halobacterium salinarum with infrared vibrational scattering-type scanning near-field optical microscopy (s-SNOM). Using near-field spectral phase contrast based on the Amide I resonance of the protein backbone, we identify the protein distribution with 20 nm spatial resolution and few-protein sensitivity. This demonstrates the general applicability of s-SNOM vibrational nanospectroscopy, with potential extension to a wide range of biomolecular systems.


Journal of the American Chemical Society | 2010

The origin of charge localization observed in organic photovoltaic materials.

James E. Johns; Eric A. Muller; Jean M. J. Fréchet; Charles B. Harris

Two of the primary hurdles facing organic electronics and photovoltaics are their low charge mobility and the inability to disentangle morphological and molecular effects on charge transport. Specific chemical groups such as alkyl side chains are often added to enable spin-casting and to improve overall power efficiency and morphologies, but their exact influence on mobility is poorly understood. Here, we use two-photon photoemission spectroscopy to study the charge transport properties of two organic semiconductors, one with and one without alkyl substituents (sexithiophene and dihexyl-sexithiophene). We show that the hydrocarbon side chains are responsible for charge localization within 230 fs. This implies that other chemical groups should be used instead of alkyl ligands to achieve the highest performance in organic photovoltaics and electronics.


Nano Letters | 2016

Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics

Kyoung-Duck Park; Eric A. Muller; Vasily Kravtsov; Paul M. Sass; Jens Dreyer; Joanna M. Atkin; Markus B. Raschke

Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes.


Journal of Physical Chemistry C | 2008

Two-photon photoemission of ultrathin film PTCDA morphologies on Ag(111)

Aram Yang; Steven T. Shipman; Sean Garrett-Roe; James E. Johns; Matt Strader; Paul Szymanski; Eric A. Muller; Charles B. Harris

Morphology- and layer-dependent electronic structure and dynamics at the PTCDA/Ag(111) interface have been studied with angle-resolved two-photon photoemission. In Stranski-Krastanov growth modes, the exposed wetting layer inhibited the evolution of the vacuum level and valence band to bulk values. For layer-by-layer growth, we observed the transition of electron structure from monolayer to bulk values within eight monolayers. Effective masses and lifetimes of the conduction band and the n=1 image potential state were measured to be larger for disordered layers. The effective mass was interpreted in the context of charge mobility measurements.


Journal of the American Chemical Society | 2013

Femtosecond Electron Solvation at the Ionic Liquid/Metal Electrode Interface

Eric A. Muller; Matthew L. Strader; James E. Johns; Aram Yang; Benjamin W. Caplins; Alex J. Shearer; David E. Suich; Charles B. Harris

Electron solvation is examined at the interface of a room temperature ionic liquid (RTIL) and an Ag(111) electrode. Femtosecond two-photon photoemission spectroscopy is used to inject an electron into an ultrathin film of RTIL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpyr](+)[NTf2](-)). While much of current literature highlights slower nanosecond solvation mechanisms in bulk ionic liquids, we observe only a femtosecond response, supporting morphology dependent and interface specific electron solvation mechanisms. The injected excess electron is found to reside in an electron affinity level residing near the metal surface. Population of this state decays back to the metal with a time constant of 400 ± 150 fs. Electron solvation is measured as a dynamic decrease in the energy with a time constant of 350 ± 150 fs. We observe two distinct temperature regimes, with a critical temperature near 250 K. The low temperature regime is characterized by a higher work function of 4.41 eV, while the high temperature regime is characterized by a lower work function of 4.19 eV. The total reorganizational energy of solvation changes above and below the critical temperature. In the high temperature regime, the electron affinity level solvates by 540 meV at 350 K, and below the critical temperature, solvation decreases to 200 meV at 130 K. This study will provide valuable insight to interface specific solvation of room temperature ionic liquids.


Science Advances | 2016

Infrared vibrational nanocrystallography and nanoimaging

Eric A. Muller; Benjamin Pollard; Hans A. Bechtel; P. van Blerkom; Markus B. Raschke

Nanoscale spectroscopy and imaging of organic materials reveal heterogeneity in molecular orientation in crystalline domains. Molecular solids and polymers can form low-symmetry crystal structures that exhibit anisotropic electron and ion mobility in engineered devices or biological systems. The distribution of molecular orientation and disorder then controls the macroscopic material response, yet it is difficult to image with conventional techniques on the nanoscale. We demonstrated a new form of optical nanocrystallography that combines scattering-type scanning near-field optical microscopy with both optical antenna and tip-selective infrared vibrational spectroscopy. From the symmetry-selective probing of molecular bond orientation with nanometer spatial resolution, we determined crystalline phases and orientation in aggregates and films of the organic electronic material perylenetetracarboxylic dianhydride. Mapping disorder within and between individual nanoscale domains, the correlative hybrid imaging of nanoscale heterogeneity provides insight into defect formation and propagation during growth in functional molecular solids.


Optics Express | 2013

Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces

J. A. D'Archangel; Eric Tucker; Edward C. Kinzel; Eric A. Muller; Hans A. Bechtel; Michael C. Martin; Markus B. Raschke; Glenn D. Boreman

Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multi-modal imaging for the design and characterization of optical metamaterials.

Collaboration


Dive into the Eric A. Muller's collaboration.

Top Co-Authors

Avatar

Markus B. Raschke

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Benjamin Pollard

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans A. Bechtel

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael C. Martin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aram Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Benjamin W. Caplins

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert L. Olmon

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge