Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Welsh is active.

Publication


Featured researches published by Eric A. Welsh.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes

Jana Stöckel; Eric A. Welsh; Michelle Liberton; Rangesh Kunnvakkam; Rajeev Aurora; Himadri B. Pakrasi

Cyanobacteria are photosynthetic organisms and are the only prokaryotes known to have a circadian lifestyle. Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 produce oxygen and can also fix atmospheric nitrogen, a process exquisitely sensitive to oxygen. To accommodate such antagonistic processes, the intracellular environment of Cyanothece oscillates between aerobic and anaerobic conditions during a day–night cycle. This is accomplished by temporal separation of the two processes: photosynthesis during the day and nitrogen fixation at night. Although previous studies have examined periodic changes in transcript levels for a limited number of genes in Cyanothece and other unicellular diazotrophic cyanobacteria, a comprehensive study of transcriptional activity in a nitrogen-fixing cyanobacterium is necessary to understand the impact of the temporal separation of photosynthesis and nitrogen fixation on global gene regulation and cellular metabolism. We have examined the expression patterns of nearly 5,000 genes in Cyanothece 51142 during two consecutive diurnal periods. Our analysis showed that ≈30% of these genes exhibited robust oscillating expression profiles. Interestingly, this set included genes for almost all central metabolic processes in Cyanothece 51142. A transcriptional network of all genes with significantly oscillating transcript levels revealed that the majority of genes encoding enzymes in numerous individual biochemical pathways, such as glycolysis, oxidative pentose phosphate pathway, and glycogen metabolism, were coregulated and maximally expressed at distinct phases during the diurnal cycle. These studies provide a comprehensive picture of how a physiologically relevant diurnal light–dark cycle influences the metabolism in a photosynthetic bacterium.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

Eric A. Welsh; Michelle Liberton; Jana Stöckel; Thomas Loh; Thanura R. Elvitigala; Chunyan Wang; Aye Wollam; Robert S. Fulton; Sandra W. Clifton; Jon M. Jacobs; Rajeev Aurora; Bijoy K. Ghosh; Louis A. Sherman; Richard D. Smith; Richard Wilson; Himadri B. Pakrasi

Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N2-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell.


Journal of Bacteriology | 2008

Differential Transcriptional Analysis of the Cyanobacterium Cyanothece sp. Strain ATCC 51142 during Light-Dark and Continuous-Light Growth

Jörg Toepel; Eric A. Welsh; Tina C. Summerfield; Himadri B. Pakrasi; Louis A. Sherman

We analyzed the metabolic rhythms and differential gene expression in the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under N(2)-fixing conditions after a shift from normal 12-h light-12-h dark cycles to continuous light. We found that the mRNA levels of approximately 10% of the genes in the genome demonstrated circadian behavior during growth in free-running (continuous light) conditions. The genes for N(2) fixation displayed a strong circadian behavior, whereas photosynthesis and respiration genes were not as tightly regulated. One of our main objectives was to determine the strategies used by these cells to perform N(2) fixation under normal day-night conditions, as well as under the greater stress caused by continuous light. We determined that N(2) fixation cycled in continuous light but with a lower N(2) fixation activity. Glycogen degradation, respiration, and photosynthesis were also lower; nonetheless, O(2) evolution was about 50% of the normal peak. We also demonstrated that nifH (encoding the nitrogenase Fe protein), nifB, and nifX were strongly induced in continuous light; this is consistent with the role of these proteins during the assembly of the enzyme complex and suggested that the decreased N(2) fixation activity was due to protein-level regulation or inhibition. Many soluble electron carriers (e.g., ferredoxins), as well as redox carriers (e.g., thioredoxin and glutathione), were strongly induced during N(2) fixation in continuous light. We suggest that these carriers are required to enhance cyclic electron transport and phosphorylation for energy production and to maintain appropriate redox levels in the presence of elevated O(2), respectively.


The Plant Cell | 2005

Psb29, a Conserved 22-kD Protein, Functions in the Biogenesis of Photosystem II Complexes in Synechocystis and Arabidopsis

Nir Keren; Hiroshi Ohkawa; Eric A. Welsh; Michelle Liberton; Himadri B. Pakrasi

Photosystem II (PSII), the enzyme responsible for photosynthetic oxygen evolution, is a rapidly turned over membrane protein complex. However, the factors that regulate biogenesis of PSII are poorly defined. Previous proteomic analysis of the PSII preparations from the cyanobacterium Synechocystis sp PCC 6803 detected a novel protein, Psb29 (Sll1414), homologs of which are found in all cyanobacteria and vascular plants with sequenced genomes. Deletion of psb29 in Synechocystis 6803 results in slower growth rates under high light intensities, increased light sensitivity, and lower PSII efficiency, without affecting the PSII core electron transfer activities. A T-DNA insertion line in the PSB29 gene in Arabidopsis thaliana displays a phenotype similar to that of the Synechocystis mutant. This plant mutant grows slowly and exhibits variegated leaves, and its PSII activity is light sensitive. Low temperature fluorescence emission spectroscopy of both cyanobacterial and plant mutants shows an increase in the proportion of uncoupled proximal antennae in PSII as a function of increasing growth light intensities. The similar phenotypes observed in both plant and cyanobacterial mutants demonstrate that the function of Psb29 has been conserved throughout the evolution of oxygenic photosynthetic organisms and suggest a role for the Psb29 protein in the biogenesis of PSII.


Molecular & Cellular Proteomics | 2010

Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations

Kimberly M. Wegener; Abhay K. Singh; Jon M. Jacobs; Thanura R. Elvitigala; Eric A. Welsh; Nir Keren; Marina A. Gritsenko; Bijoy K. Ghosh; David G. Camp; Richard D. Smith; Himadri B. Pakrasi

Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a large-scale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen.


Mbio | 2011

Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria

Anindita Bandyopadhyay; Thanura R. Elvitigala; Eric A. Welsh; Jana Stöckel; Michelle Liberton; Hongtao Min; Louis A. Sherman; Himadri B. Pakrasi

ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. IMPORTANCE The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of this cyanobacterial group, we analyzed the genome sequences of five additional Cyanothece strains from different geographical habitats, exhibiting diverse morphological and physiological attributes. These strains exhibit high rates of N2 fixation and H2 production under aerobic conditions. They can generate copious amounts of carbohydrates that are stored in large starch-like granules and facilitate energy-intensive processes during the dark, anoxic phase of the cells. The genomes of some Cyanothece strains are quite unique in that there are linear elements in addition to a large circular chromosome. Our study provides novel insights into the metabolism of this class of unicellular nitrogen-fixing cyanobacteria. The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of this cyanobacterial group, we analyzed the genome sequences of five additional Cyanothece strains from different geographical habitats, exhibiting diverse morphological and physiological attributes. These strains exhibit high rates of N2 fixation and H2 production under aerobic conditions. They can generate copious amounts of carbohydrates that are stored in large starch-like granules and facilitate energy-intensive processes during the dark, anoxic phase of the cells. The genomes of some Cyanothece strains are quite unique in that there are linear elements in addition to a large circular chromosome. Our study provides novel insights into the metabolism of this class of unicellular nitrogen-fixing cyanobacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells

Jae-Young Kim; Eric A. Welsh; Umut Oguz; Bin Fang; Yun Bai; Fumi Kinose; Crystina C. Bronk; Lily L. Remsing Rix; Amer A. Beg; Uwe Rix; Steven Eschrich; John M. Koomen; Eric B. Haura

TANK-binding kinase 1 (TBK1) has emerged as a novel therapeutic target for unspecified subset of lung cancers. TBK1 reportedly mediates prosurvival signaling by activating NF-κB and AKT. However, we observed that TBK1 knockdown also decreased viability of cells expressing constitutively active NF-κB and interferon regulatory factor 3. Basal phospho-AKT level was not reduced after TBK1 knockdown in TBK1-sensitive lung cancer cells, implicating that TBK1 mediates unknown survival mechanisms. To gain better insight into TBK1 survival signaling, we searched for altered phosphoproteins using mass spectrometry following RNAi-mediated TBK1 knockdown. In total, we identified 2,080 phosphoproteins (4,621 peptides), of which 385 proteins (477 peptides) were affected after TBK1 knockdown. A view of the altered network identified a central role of Polo-like kinase 1 (PLK1) and known PLK1 targets. We found that TBK1 directly phosphorylated PLK1 in vitro. TBK1 phosphorylation was induced at mitosis, and loss of TBK1 impaired mitotic phosphorylation of PLK1 in TBK1-sensitive lung cancer cells. Furthermore, lung cancer cell sensitivity to TBK1 was highly correlated with sensitivity to pharmacological PLK inhibition. We additionally found that TBK1 knockdown decreased metadherin phosphorylation at Ser-568. Metadherin was associated with poor outcome in lung cancer, and loss of metadherin caused growth inhibition and apoptosis in TBK1-sensitive lung cancer cells. These results collectively revealed TBK1 as a mitosis regulator through activation of PLK1 and also suggested metadherin as a putative TBK1 downstream effector involved in lung cancer cell survival.


Lancet Oncology | 2017

A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study

Jacob G. Scott; Anders Berglund; Michael J. Schell; I Mihaylov; William J. Fulp; Binglin Yue; Eric A. Welsh; Jimmy J. Caudell; Kamran Ahmed; Tobin S Strom; Eric A. Mellon; P.S. Venkat; Peter A.S. Johnstone; John A. Foekens; Jae K. Lee; Eduardo G. Moros; William S. Dalton; Steven Eschrich; Howard McLeod; Louis B. Harrison; Javier F. Torres-Roca

BACKGROUND Despite its common use in cancer treatment, radiotherapy has not yet entered the era of precision medicine, and there have been no approaches to adjust dose based on biological differences between or within tumours. We aimed to assess whether a patient-specific molecular signature of radiation sensitivity could be used to identify the optimum radiotherapy dose. METHODS We used the gene-expression-based radiation-sensitivity index and the linear quadratic model to derive the genomic-adjusted radiation dose (GARD). A high GARD value predicts for high therapeutic effect for radiotherapy; which we postulate would relate to clinical outcome. Using data from the prospective, observational Total Cancer Care (TCC) protocol, we calculated GARD for primary tumours from 20 disease sites treated using standard radiotherapy doses for each disease type. We also used multivariable Cox modelling to assess whether GARD was independently associated with clinical outcome in five clinical cohorts: Erasmus Breast Cancer Cohort (n=263); Karolinska Breast Cancer Cohort (n=77); Moffitt Lung Cancer Cohort (n=60); Moffitt Pancreas Cancer Cohort (n=40); and The Cancer Genome Atlas Glioblastoma Patient Cohort (n=98). FINDINGS We calculated GARD for 8271 tissue samples from the TCC cohort. There was a wide range of GARD values (range 1·66-172·4) across the TCC cohort despite assignment of uniform radiotherapy doses within disease types. Median GARD values were lowest for gliomas and sarcomas and highest for cervical cancer and oropharyngeal head and neck cancer. There was a wide range of GARD values within tumour type groups. GARD independently predicted clinical outcome in breast cancer, lung cancer, glioblastoma, and pancreatic cancer. In the Erasmus Breast Cancer Cohort, 5-year distant-metastasis-free survival was longer in patients with high GARD values than in those with low GARD values (hazard ratio 2·11, 95% 1·13-3·94, p=0·018). INTERPRETATION A GARD-based clinical model could allow the individualisation of radiotherapy dose to tumour radiosensitivity and could provide a framework to design genomically-guided clinical trials in radiation oncology. FUNDING None.


PLOS ONE | 2011

Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142.

Jana Stöckel; Jon M. Jacobs; Thanura R. Elvitigala; Michelle Liberton; Eric A. Welsh; Ashoka D. Polpitiya; Marina A. Gritsenko; Carrie D. Nicora; David W. Koppenaal; Richard D. Smith; Himadri B. Pakrasi

Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.


BMC Bioinformatics | 2013

Iterative rank-order normalization of gene expression microarray data

Eric A. Welsh; Steven Eschrich; Anders Berglund; David Fenstermacher

BackgroundMany gene expression normalization algorithms exist for Affymetrix GeneChip microarrays. The most popular of these is RMA, primarily due to the precision and low noise produced during the process. A significant strength of this and similar approaches is the use of the entire set of arrays during both normalization and model-based estimation of signal. However, this leads to differing estimates of expression based on the starting set of arrays, and estimates can change when a single, additional chip is added to the set. Additionally, outlier chips can impact the signals of other arrays, and can themselves be skewed by the majority of the population.ResultsWe developed an approach, termed IRON, which uses the best-performing techniques from each of several popular processing methods while retaining the ability to incrementally renormalize data without altering previously normalized expression. This combination of approaches results in a method that performs comparably to existing approaches on artificial benchmark datasets (i.e. spike-in) and demonstrates promising improvements in segregating true signals within biologically complex experiments.ConclusionsBy combining approaches from existing normalization techniques, the IRON method offers several advantages. First, IRON normalization occurs pair-wise, thereby avoiding the need for all chips to be normalized together, which can be important for large data analyses. Secondly, the technique does not require similarity in signal distribution across chips for normalization, which can be important for maintaining biologically relevant differences in a heterogeneous background. Lastly, IRON introduces fewer post-processing artifacts, particularly in data whose behavior violates common assumptions. Thus, the IRON method provides a practical solution to common needs of expression analysis. A software implementation of IRON is available at [http://gene.moffitt.org/libaffy/].

Collaboration


Dive into the Eric A. Welsh's collaboration.

Top Co-Authors

Avatar

Steven Eschrich

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Eric B. Haura

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Anders Berglund

Uppsala University Hospital

View shared research outputs
Top Co-Authors

Avatar

Bin Fang

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

John M. Koomen

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie K. Teer

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Himadri B. Pakrasi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Douglas Cress

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge