Eric B. Haura
University of South Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric B. Haura.
Oncogene | 2002
Guilian Niu; Kenneth L. Wright; Mei Huang; Lanxi Song; Eric B. Haura; James Turkson; Shumin M. Zhang; Tianhong Wang; Dominic Sinibaldi; Domenico Coppola; Richard Heller; Lee M. Ellis; James Karras; Jacqueline Bromberg; Drew Pardoll; Richard Jove; Hua Yu
Non-receptor and receptor tyrosine kinases, such as Src and EGF receptor (EGFR), are major inducers of vascular endothelial growth factor (VEGF), one of the most potent mediators of angiogenesis. While tyrosine kinases signal through multiple pathways, signal transducer and activation of transcription 3 (Stat3) is a point of convergence for many of these and is constitutively activated with high frequency in a wide range of cancer cells. Here, we show that VEGF expression correlates with Stat3 activity in diverse human cancer cell lines. An activated Stat3 mutant (Stat3C) up-regulates VEGF expression and stimulates tumor angiogenesis. Stat3C-induced VEGF up-regulation is abrogated when a Stat3-binding site in the VEGF promoter is mutated. Furthermore, interrupting Stat3 signaling with dominant-negative Stat3 protein or Stat3 antisense oligonucleotide in tumor cells down-regulates VEGF expression. Consistent with an important role of Stat3 in VEGF up-regulation induced by various oncogenic tyrosine kinases, v-Src-mediated VEGF expression is inhibited when Stat3 signaling is blocked. Moreover, chromatin immunoprecipitation assays indicate that Stat3 protein binds to the VEGF promoter in vivo and mutation of a Stat3-binding site in the VEGF promoter abrogates v-Src-induced VEGF promoter activity. These studies provide evidence that the VEGF gene is regulated directly by Stat3 protein, and indicate that Stat3 represents a common molecular target for blocking angiogenesis induced by multiple signaling pathways in human cancers.
JAMA | 2014
Mark G. Kris; Bruce E. Johnson; Lynne D. Berry; David J. Kwiatkowski; A. John Iafrate; Ignacio I. Wistuba; Marileila Varella-Garcia; Wilbur A. Franklin; Samuel L. Aronson; Pei Fang Su; Yu Shyr; D. Ross Camidge; Lecia V. Sequist; Bonnie S. Glisson; Fadlo R. Khuri; Edward B. Garon; William Pao; Charles M. Rudin; Joan H. Schiller; Eric B. Haura; Mark A. Socinski; Keisuke Shirai; Heidi Chen; Giuseppe Giaccone; Marc Ladanyi; Kelly Kugler; John D. Minna; Paul A. Bunn
IMPORTANCE Targeting oncogenic drivers (genomic alterations critical to cancer development and maintenance) has transformed the care of patients with lung adenocarcinomas. The Lung Cancer Mutation Consortium was formed to perform multiplexed assays testing adenocarcinomas of the lung for drivers in 10 genes to enable clinicians to select targeted treatments and enroll patients into clinical trials. OBJECTIVES To determine the frequency of oncogenic drivers in patients with lung adenocarcinomas and to use the data to select treatments targeting the identified driver(s) and measure survival. DESIGN, SETTING, AND PARTICIPANTS From 2009 through 2012, 14 sites in the United States enrolled patients with metastatic lung adenocarcinomas and a performance status of 0 through 2 and tested their tumors for 10 drivers. Information was collected on patients, therapies, and survival. INTERVENTIONS Tumors were tested for 10 oncogenic drivers, and results were used to select matched targeted therapies. MAIN OUTCOMES AND MEASURES Determination of the frequency of oncogenic drivers, the proportion of patients treated with genotype-directed therapy, and survival. RESULTS From 2009 through 2012, tumors from 1007 patients were tested for at least 1 gene and 733 for 10 genes (patients with full genotyping). An oncogenic driver was found in 466 of 733 patients (64%). Among these 733 tumors, 182 tumors (25%) had the KRAS driver; sensitizing EGFR, 122 (17%); ALK rearrangements, 57 (8%); other EGFR, 29 (4%); 2 or more genes, 24 (3%); ERBB2 (formerly HER2), 19 (3%); BRAF, 16 (2%); PIK3CA, 6 (<1%); MET amplification, 5 (<1%); NRAS, 5 (<1%); MEK1, 1 (<1%); AKT1, 0. Results were used to select a targeted therapy or trial in 275 of 1007 patients (28%). The median survival was 3.5 years (interquartile range [IQR], 1.96-7.70) for the 260 patients with an oncogenic driver and genotype-directed therapy compared with 2.4 years (IQR, 0.88-6.20) for the 318 patients with any oncogenic driver(s) who did not receive genotype-directed therapy (propensity score-adjusted hazard ratio, 0.69 [95% CI, 0.53-0.9], P = .006). CONCLUSIONS AND RELEVANCE Actionable drivers were detected in 64% of lung adenocarcinomas. Multiplexed testing aided physicians in selecting therapies. Although individuals with drivers receiving a matched targeted agent lived longer, randomized trials are required to determine if targeting therapy based on oncogenic drivers improves survival. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01014286.
Nature Reviews Clinical Oncology | 2009
Lori C. Kim; Lanxi Song; Eric B. Haura
Src family kinases (SFKs) have a critical role in cell adhesion, invasion, proliferation, survival, and angiogenesis during tumor development. SFKs comprise nine family members that share similar structure and function. Overexpression or high activation of SFKs occurs frequently in tumor tissues and they are central mediators in multiple signaling pathways that are important in oncogenesis. SFKs can interact with tyrosine kinase receptors, such as EGFR and the VEGF receptor. SFKs can affect cell proliferation via the Ras/ERK/MAPK pathway and can regulate gene expression via transcription factors such as STAT molecules. SFKs can also affect cell adhesion and migration via interaction with integrins, actins, GTPase-activating proteins, scaffold proteins, such as p130CAS and paxillin, and kinases such as focal adhesion kinases. Furthermore, SFKs can regulate angiogenesis via gene expression of angiogenic growth factors, such as fibroblast growth factor, VEGF, and interleukin 8. On the basis of these important findings, small-molecule SFK inhibitors have been developed and are undergoing early phase clinical testing. In preclinical studies these agents can suppress tumor growth and metastases. The agents seem to be safe in humans and could add to the therapeutic arsenal against subsets of cancers.
Cancer Discovery | 2011
Peter S. Hammerman; Martin L. Sos; Alex H. Ramos; Chunxiao Xu; Amit Dutt; Wenjun Zhou; Lear E. Brace; Brittany A. Woods; Wenchu Lin; Jianming Zhang; Xianming Deng; Sang Min Lim; Stefanie Heynck; Martin Peifer; Jeffrey R. Simard; Michael S. Lawrence; Robert C. Onofrio; Helga B. Salvesen; Danila Seidel; Thomas Zander; Johannes M. Heuckmann; Alex Soltermann; Holger Moch; Mirjam Koker; Frauke Leenders; Franziska Gabler; Silvia Querings; Sascha Ansén; Elisabeth Brambilla; Christian Brambilla
UNLABELLED While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials. SIGNIFICANCE DDR2 mutations are present in 4% of lung SCCs, and DDR2 mutations are associated with sensitivity to dasatinib. These findings provide a rationale for designing clinical trials with the FDA-approved drug dasatinib in patients with lung SCCs.
Nature Reviews Clinical Oncology | 2005
Eric B. Haura; James Turkson; Richard Jove
Members of the signal transducers and activators of transcription (STAT) pathway, which were originally identified as key components linking cytokine signals to transcriptional events in cells, have recently been demonstrated to have a major role in cancer. They are cytoplasmic proteins that form functional dimers with each other when activated by tyrosine phosphorylation. Activated STAT proteins translocate to the nucleus to regulate expression of genes by binding to specific elements within gene promoters. Constitutive activation of the STAT family members Stat3 and Stat5, and/or loss of Stat1 signaling, is found in a large group of diverse tumors. Increasing evidence demonstrates that STAT proteins can regulate many pathways important in oncogenesis including cell-cycle progression, apoptosis, tumor angiogenesis, tumor-cell invasion and metastasis, and tumor-cell evasion of the immune system. Based on these findings, a growing effort is underway to target STAT proteins directly and indirectly for cancer therapy. This review will highlight STAT signaling pathways, STAT target genes involved in cancer, evidence for STAT activation in human cancers, and therapeutic strategies to target STAT molecules for anticancer therapy.
Oncogene | 2005
Daniel J Dauer; Bernadette Ferraro; Lanxi Song; Bin Yu; Linda B. Mora; Ralf Buettner; Steve Enkemann; Richard Jove; Eric B. Haura
Wound healing and cancer are both characterized by cell proliferation, remodeling of extracellular matrix, cell invasion and migration, new blood vessel formation, and modulation of blood coagulation. The mechanisms that link wound healing and cancer are poorly understood. We report here that Stat3, a common signaling mechanism involved in oncogenesis and tissue injury, regulates a common set of genes involved in wound healing and cancer. Using oligonucleotide gene arrays and quantitative real-time PCR, we evaluated changes in global gene expression resulting from expression of Stat3 in lung epithelial cells. We report here previously uncharacterized genes induced by Stat3 implicated in signaling pathways common to both wound healing and cancer including cell invasion and migration, angiogenesis, modulation of coagulation, and repression of interferon-inducible genes. Consistent with these results, we found increased Stat3 activity associated with wound healing in chronically inflamed mouse lungs and increased Stat3 activity was identified at the leading edge of lung tumors invading adjacent nontumor stroma. These findings provide a molecular basis for understanding cancer as a deregulation of normal wound healing processes.
Oncogene | 2003
Lanxi Song; James Turkson; James Karras; Richard Jove; Eric B. Haura
Overexpression of receptor tyrosine kinases including the epidermal growth factor receptor (EGF-R) as well as nonreceptor tyrosine kinases, such as Src, have been implicated in the formation of human lung cancers. In addition, cytokines like interleukin-6 (IL-6) have been demonstrated to modulate lung cancer cell growth and elevated levels of IL-6 have been shown to be an adverse prognostic factor for patients with lung cancer. Despite a large body of evidence pointing to their potential importance, few direct studies into the role of signal transducers and activators of transcription (STAT) pathways in human lung cancer have been undertaken. Here we demonstrate that multiple nonsmall cell lung cancer cell lines demonstrate constitutive Stat3 DNA-binding activity. Stat3 DNA-binding activity is specifically upregulated by the addition of epidermal growth factor (EGF), IL-6, and hepatocyte-derived growth factor (HGF). Furthermore, the stimulation of Stat3 DNA-binding activity by EGF requires the activity of EGF-R tyrosine kinase as well as Src-kinase, while the upregulation of Stat3 activity by IL-6 or HGF requires only Src-kinase activity. Treatment of A549 lung cancer cells with PD180970 or SU6656, both pharmacological inhibitors of Src-kinase, resulted in reduced Src and Stat3 activity, cell cycle arrest in G2, and reduced viability of cells accompanied by induction of apoptosis. Treatment of Stat3-positive A549 and H358 cells with antisense Stat3 oligonucleotides results in complete loss of Stat3 DNA-binding activity and apoptosis, while Stat3-positive H1299 cells remained healthy. Finally, an adenoviral vector expressing a dominant-negative Stat3 isoform results in loss of Stat3 DNA-binding activity, apoptosis, and reduced cellular viability. These results demonstrate a role of Stat3 in transducing survival signals downstream of tyrosine kinases such as Src, EGF-R, and c-Met, as well as cytokines such as IL-6, in human nonsmall cell lung cancers.
Journal of Clinical Investigation | 2006
Piyali Dasgupta; Shipra Rastogi; Smitha Pillai; Dalia Ordonez-Ercan; Mark R. Morris; Eric B. Haura; Srikumar Chellappan
Recent studies have shown that nicotine, a component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. While nicotine is not carcinogenic by itself, it has been shown to induce cell proliferation and angiogenesis. Here we find that mitogenic effects of nicotine in non-small cell lung cancers (NSCLCs) are analogous to those of growth factors and involve activation of Src, induction of Rb-Raf-1 interaction, and phosphorylation of Rb. Analysis of human NSCLC tumors show enhanced levels of Rb-Raf-1 complexes compared with adjacent normal tissue. The mitogenic effects of nicotine were mediated via the alpha7-nAChR subunit and resulted in enhanced recruitment of E2F1 and Raf-1 on proliferative promoters in NSCLC cell lines and human lung tumors. Nicotine stimulation of NSCLC cells caused dissociation of Rb from these promoters. Proliferative signaling via nicotinic acetylcholine receptors (nAChRs) required the scaffolding protein beta-arrestin; ablation of beta-arrestin or disruption of the Rb-Raf-1 interaction blocked nicotine-induced proliferation of NSCLCs. Additionally, suppression of beta-arrestin also blocked activation of Src, suppressed levels of phosphorylated ERK, and abrogated Rb-Raf-1 binding in response to nicotine. It appears that nicotine induces cell proliferation by beta-arrestin-mediated activation of the Src and Rb-Raf-1 pathways.
International Journal of Cancer | 2009
Piyali Dasgupta; Wasia Rizwani; Smitha Pillai; Rebecca Kinkade; Michelle Kovacs; Shipra Rastogi; Sarmistha Banerjee; Melanie A. Carless; Esther Kim; Domenico Coppola; Eric B. Haura; Srikumar Chellappan
Cigarette smoking is strongly correlated with the onset of nonsmall cell lung cancer (NSCLC). Nicotine, an active component of cigarettes, has been found to induce proliferation of lung cancer cell lines. In addition, nicotine can induce angiogenesis and confer resistance to apoptosis. All these events are mediated through the nicotinic acetylcholine receptors (nAChRs) on lung cancer cells. In this study, we demonstrate that nicotine can promote anchorage‐independent growth in NSCLCs. In addition, nicotine also induces morphological changes characteristic of a migratory, invasive phenotype in NSCLCs on collagen gel. These morphological changes were similar to those induced by the promigratory growth factor VEGF. The proinvasive effects of nicotine were mediated by α7‐nAChRs on NSCLCs. RT‐PCR analysis showed that the α7‐nAChRs were also expressed on human breast cancer and pancreatic cancer cell lines. Nicotine was found to promote proliferation and invasion in human breast cancer. The proinvasive effects of nicotine were mediated via a nAChR, Src and calcium‐dependent signaling pathway in breast cancer cells. In a similar fashion, nicotine could also induce proliferation and invasion of Aspc1 pancreatic cancer cells. Most importantly, nicotine could induce changes in gene expression consistent with epithelial to mesenchymal transition (EMT), characterized by reduction of epithelial markers like E‐cadherin expression, ZO‐1 staining and concomitant increase in levels of mesenchymal proteins like vimentin and fibronectin in human breast and lung cancer cells. Therefore, it is probable that the ability of nicotine to induce invasion and EMT may contribute to the progression of breast and lung cancers.
Nature Chemical Biology | 2010
Jiannong Li; Uwe Rix; Bin Fang; Yun Bai; Arthur Edwards; Jacques Colinge; Keiryn L. Bennett; Jingchun Gao; Lanxi Song; Steven Eschrich; Giulio Superti-Furga; John M. Koomen; Eric B. Haura
We describe a strategy to comprehend signaling pathways active in lung cancer cells and targeted by dasatinib employing chemical proteomics to identify direct interacting proteins combined with immunoaffinity purification of tyrosine phosphorylated peptides corresponding to activated tyrosine kinases. We identified nearly 40 different kinase targets of dasatinib. These include SFK members (LYN, SRC, FYN, LCK, YES), non-receptor tyrosine kinases (FRK, BRK, ACK), and receptor tyrosine kinases (Ephrin receptors, DDR1, EGFR). Using quantitative phosphoproteomics we identified peptides corresponding to autophosphorylation sites of these tyrosine kinases that are inhibited in a concentration-dependent manner by dasatinib. Using drug resistant gatekeeper mutants, we show that SFK kinases, particularly SRC and FYN, as well as EGFR are relevant targets for dasatinib action. The combined mass spectrometry based approach described here provides a system-level view of dasatinib action in cancer cells and suggests both functional targets and rationale combinatorial therapeutic strategies.