Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric A. Zilli is active.

Publication


Featured researches published by Eric A. Zilli.


Science | 2007

Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing

Lisa M. Giocomo; Eric A. Zilli; Erik Fransén; Michael E. Hasselmo

Grid cells in layer II of rat entorhinal cortex fire to spatial locations in a repeating hexagonal grid, with smaller spacing between grid fields for neurons inmore dorsal anatomical locations. Data from in vitro whole-cell patch recordings showed differences in frequency of subthreshold membrane potential oscillations in entorhinal neurons that correspond to different positions along the dorsal-to-ventral axis, supporting a model of physiological mechanisms for grid cell responses.


Frontiers in Integrative Neuroscience | 2010

Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates

James M. Hyman; Eric A. Zilli; Amanda M. Paley; Michael E. Hasselmo

Performance of memory tasks is impaired by lesions to either the medial prefrontal cortex (mPFC) or the hippocampus (HPC); although how these two areas contribute to successful performance is not well understood. mPFC unit activity is temporally affected by hippocampal-theta oscillations, with almost half the mPFC population entrained to theta in behaving animals, pointing to theta interactions as the mechanism enabling collaborations between these two areas. mPFC neurons respond to sensory stimuli and responses in working memory tasks, though the function of these correlated firing rate changes remains unclear because similar responses are reported during mPFC dependent and independent tasks. Using a DNMS task we compared error trials vs. correct trials and found almost all mPFC cells fired at similar rates during both error and correct trials (92%), however theta-entrainment of mPFC neurons declined during error performance as only 17% of cells were theta-entrained (during correct trials 46% of the population was theta-entrained). Across the population, error and correct trials did not differ in firing rate, but theta-entrainment was impaired. Periods of theta-entrainment and firing rate changes appeared to be independent variables, and only theta-entrainment was correlated with successful performance, indicating mPFC-HPC theta-range interactions are the key to successful DNMS performance.


Neuron | 2006

Gradual Translocation of Spatial Correlates of Neuronal Firing in the Hippocampus toward Prospective Reward Locations

Inah Lee; Amy L. Griffin; Eric A. Zilli; Howard Eichenbaum; Michael E. Hasselmo

In a continuous T-maze alternation task, CA1 complex-spike neurons in the hippocampus differentially fire as the rat traverses overlapping segments of the maze (i.e., the stem) repeatedly via alternate routes. The temporal dynamics of this phenomenon were further investigated in the current study. Rats learned the alternation task from the first day of acquisition and the differential firing pattern in the stem was observed accordingly. More importantly, we report a phenomenon in which spatial correlates of CA1 neuronal ensembles gradually changed from their original firing locations, shifting toward prospective goal locations in the continuous T-maze alternation task. The relative locations of simultaneously recorded firing fields, however, were preserved within the ensemble spatial representation during this shifting. The within-session shifts in preferred firing locations in the absence of any changes in the environment suggest that certain cognitive factors can significantly alter the location-bound coding scheme of hippocampal neurons.


Neurobiology of Learning and Memory | 2007

Hippocampal CA1 spiking during encoding and retrieval : Relation to theta phase

Joseph R. Manns; Eric A. Zilli; Kimberly C. Ong; Michael E. Hasselmo; Howard Eichenbaum

The hippocampal theta rhythm is a prominent oscillation in the field potential observed throughout the hippocampus as a rat investigates stimuli in the environment. A recent computational model [Hasselmo, M. E., Bodelon, C., & Wyble, B. P. (2002a). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14, 793-817. Neuromodulation, theta rhythm and rat spatial navigation. Neural Networks, 15, 689-707] suggested that the theta rhythm allows the hippocampal formation to alternate rapidly between conditions that promote memory encoding (strong synaptic input from entorhinal cortex to areas CA3 and CA1) and conditions that promote memory retrieval (strong synaptic input from CA3 to CA1). That model predicted that the preferred theta phase of CA1 spiking should differ for information being encoded versus information being retrieved. In the present study, the spiking activity of CA1 pyramidal cells was recorded while rats performed either an odor-cued delayed nonmatch-to-sample recognition memory test or an object recognition memory task based on the animals spontaneous preference for novelty. In the test period of both tasks, the preferred theta phase exhibited by CA1 pyramidal cells differed between moments when the rat inspected repeated (match) and non-repeated (nonmatch) items. Also in the present study, additional modeling work extended the previous model to address the mean phase of CA1 spiking associated with stimuli inducing varying levels of retrieval relative to encoding, ranging from novel nonmatch stimuli with no retrieval to highly familiar repeated stimuli with extensive retrieval. The modeling results obtained here demonstrated that the experimentally observed phase differences are consistent with different levels of CA3 synaptic input to CA1 during recognition of repeated items.


The Journal of Neuroscience | 2010

Coupled Noisy Spiking Neurons as Velocity-Controlled Oscillators in a Model of Grid Cell Spatial Firing

Eric A. Zilli; Michael E. Hasselmo

One of the two primary classes of models of grid cell spatial firing uses interference between oscillators at dynamically modulated frequencies. Generally, these models are presented in terms of idealized oscillators (modeled as sinusoids), which differ from biological oscillators in multiple important ways. Here we show that two more realistic, noisy neural models (Izhikevichs simple model and a biophysical model of an entorhinal cortex stellate cell) can be successfully used as oscillators in a model of this type. When additive noise is included in the models such that uncoupled or sparsely coupled cells show realistic interspike interval variance, both synaptic and gap-junction coupling can synchronize networks of cells to produce comparatively less variable network-level oscillations. We show that the frequency of these oscillatory networks can be controlled sufficiently well to produce stable grid cell spatial firing on the order of at least 2–5 min, despite the high noise level. Our results suggest that the basic principles of oscillatory interference models work with more realistic models of noisy neurons. Nevertheless, a number of simplifications were still made and future work should examine increasingly realistic models.


Frontiers in Neural Circuits | 2012

Models of Grid Cell Spatial Firing Published 2005–2011

Eric A. Zilli

Since the discovery of grid cells in rat entorhinal cortex, many models of their hexagonally arrayed spatial firing fields have been suggested. We review the models and organize them according to the mechanisms they use to encode position, update the positional code, read it out in the spatial grid pattern, and learn any patterned synaptic connections needed. We mention biological implementations of the models, but focus on the models on Marr’s algorithmic level, where they are not things to individually prove or disprove, but rather are a valuable collection of metaphors of the grid cell system for guiding research that are all likely true to some degree, with each simply emphasizing different aspects of the system. For the convenience of interested researchers, MATLAB implementations of the discussed grid cell models are provided at ModelDB accession 144006 or http://people.bu.edu/zilli/gridmodels.html.


PLOS Computational Biology | 2009

Evaluation of the Oscillatory Interference Model of Grid Cell Firing through Analysis and Measured Period Variance of Some Biological Oscillators

Eric A. Zilli; Motoharu Yoshida; Babak Tahvildari; Lisa M. Giocomo; Michael E. Hasselmo

Models of the hexagonally arrayed spatial activity pattern of grid cell firing in the literature generally fall into two main categories: continuous attractor models or oscillatory interference models. Burak and Fiete (2009, PLoS Comput Biol) recently examined noise in two continuous attractor models, but did not consider oscillatory interference models in detail. Here we analyze an oscillatory interference model to examine the effects of noise on its stability and spatial firing properties. We show analytically that the square of the drift in encoded position due to noise is proportional to time and inversely proportional to the number of oscillators. We also show there is a relatively fixed breakdown point, independent of many parameters of the model, past which noise overwhelms the spatial signal. Based on this result, we show that a pair of oscillators are expected to maintain a stable grid for approximately t = 5µ 3 /(4πσ) 2 seconds where µ is the mean period of an oscillator in seconds and σ2 its variance in seconds2. We apply this criterion to recordings of individual persistent spiking neurons in postsubiculum (dorsal presubiculum) and layers III and V of entorhinal cortex, to subthreshold membrane potential oscillation recordings in layer II stellate cells of medial entorhinal cortex and to values from the literature regarding medial septum theta bursting cells. All oscillators examined have expected stability times far below those seen in experimental recordings of grid cells, suggesting the examined biological oscillators are unfit as a substrate for current implementations of oscillatory interference models. However, oscillatory interference models can tolerate small amounts of noise, suggesting the utility of circuit level effects which might reduce oscillator variability. Further implications for grid cell models are discussed.


Neural Networks | 2009

2009 Special Issue: A phase code for memory could arise from circuit mechanisms in entorhinal cortex

Michael E. Hasselmo; Mark P. Brandon; Motoharu Yoshida; Lisa M. Giocomo; James G. Heys; Erik Fransen; Ehren L. Newman; Eric A. Zilli

Neurophysiological data reveals intrinsic cellular properties that suggest how entorhinal cortical neurons could code memory by the phase of their firing. Potential cellular mechanisms for this phase coding in models of entorhinal function are reviewed. This mechanism for phase coding provides a substrate for modeling the responses of entorhinal grid cells, as well as the replay of neural spiking activity during waking and sleep. Efforts to implement these abstract models in more detailed biophysical compartmental simulations raise specific issues that could be addressed in larger scale population models incorporating mechanisms of inhibition.


Frontiers in Computational Neuroscience | 2008

Analyses of Markov decision process structure regarding the possible strategic use of interacting memory systems

Eric A. Zilli; Michael E. Hasselmo

Behavioral tasks are often used to study the different memory systems present in humans and animals. Such tasks are usually designed to isolate and measure some aspect of a single memory system. However, it is not necessarily clear that any given task actually does isolate a system or that the strategy used by a subject in the experiment is the one desired by the experimenter. We have previously shown that when tasks are written mathematically as a form of partially observable Markov decision processes, the structure of the tasks provide information regarding the possible utility of certain memory systems. These previous analyses dealt with the disambiguation problem: given a specific ambiguous observation of the environment, is there information provided by a given memory strategy that can disambiguate that observation to allow a correct decision? Here we extend this approach to cases where multiple memory systems can be strategically combined in different ways. Specifically, we analyze the disambiguation arising from three ways by which episodic-like memory retrieval might be cued (by another episodic-like memory, by a semantic association, or by working memory for some earlier observation). We also consider the disambiguation arising from holding earlier working memories, episodic-like memories or semantic associations in working memory. From these analyses we can begin to develop a quantitative hierarchy among memory systems in which stimulus-response memories and semantic associations provide no disambiguation while the episodic memory system provides the most flexible disambiguation, with working memory at an intermediate level.


PLOS ONE | 2008

The Influence of Markov Decision Process Structure on the Possible Strategic Use of Working Memory and Episodic Memory

Eric A. Zilli; Michael E. Hasselmo

Researchers use a variety of behavioral tasks to analyze the effect of biological manipulations on memory function. This research will benefit from a systematic mathematical method for analyzing memory demands in behavioral tasks. In the framework of reinforcement learning theory, these tasks can be mathematically described as partially-observable Markov decision processes. While a wealth of evidence collected over the past 15 years relates the basal ganglia to the reinforcement learning framework, only recently has much attention been paid to including psychological concepts such as working memory or episodic memory in these models. This paper presents an analysis that provides a quantitative description of memory states sufficient for correct choices at specific decision points. Using information from the mathematical structure of the task descriptions, we derive measures that indicate whether working memory (for one or more cues) or episodic memory can provide strategically useful information to an agent. In particular, the analysis determines which observed states must be maintained in or retrieved from memory to perform these specific tasks. We demonstrate the analysis on three simplified tasks as well as eight more complex memory tasks drawn from the animal and human literature (two alternation tasks, two sequence disambiguation tasks, two non-matching tasks, the 2-back task, and the 1-2-AX task). The results of these analyses agree with results from quantitative simulations of the task reported in previous publications and provide simple indications of the memory demands of the tasks which can require far less computation than a full simulation of the task. This may provide a basis for a quantitative behavioral stoichiometry of memory tasks.

Collaboration


Dive into the Eric A. Zilli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Hyman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge