Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Hasselmo is active.

Publication


Featured researches published by Michael E. Hasselmo.


Current Opinion in Neurobiology | 2006

The Role of Acetylcholine in Learning and Memory

Michael E. Hasselmo

Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories.


Nature | 2002

Graded persistent activity in entorhinal cortex neurons.

Alexei V. Egorov; Bassam N. Hamam; Erik Fransén; Michael E. Hasselmo; Angel Alonso

Working memory represents the ability of the brain to hold externally or internally driven information for relatively short periods of time. Persistent neuronal activity is the elementary process underlying working memory but its cellular basis remains unknown. The most widely accepted hypothesis is that persistent activity is based on synaptic reverberations in recurrent circuits. The entorhinal cortex in the parahippocampal region is crucially involved in the acquisition, consolidation and retrieval of long-term memory traces for which working memory operations are essential. Here we show that individual neurons from layer V of the entorhinal cortex—which link the hippocampus to extensive cortical regions—respond to consecutive stimuli with graded changes in firing frequency that remain stable after each stimulus presentation. In addition, the sustained levels of firing frequency can be either increased or decreased in an input-specific manner. This firing behaviour displays robustness to distractors; it is linked to cholinergic muscarinic receptor activation, and relies on activity-dependent changes of a Ca2+-sensitive cationic current. Such an intrinsic neuronal ability to generate graded persistent activity constitutes an elementary mechanism for working memory.


Trends in Cognitive Sciences | 1999

Neuromodulation: acetylcholine and memory consolidation.

Michael E. Hasselmo

Clinical and experimental evidence suggests that hippocampal damage causes more severe disruption of episodic memories if those memories were encoded in the recent rather than the more distant past. This decrease in sensitivity to damage over time might reflect the formation of multiple traces within the hippocampus itself, or the formation of additional associative links in entorhinal and association cortices. Physiological evidence also supports a two-stage model of the encoding process in which the initial encoding occurs during active waking and deeper consolidation occurs via the formation of additional memory traces during quiet waking or slow-wave sleep. In this article I will describe the changes in cholinergic tone within the hippocampus in different stages of the sleep-wake cycle and will propose that these changes modulate different stages of memory formation. In particular, I will suggest that the high levels of acetylcholine that are present during active waking might set the appropriate dynamics for encoding new information in the hippocampus, by partially suppressing excitatory feedback connections and so facilitating encoding without interference from previously stored information. By contrast, the lower levels of acetylcholine that are present during quiet waking and slow-wave sleep might release this suppression and thereby allow a stronger spread of activity within the hippocampus itself and from the hippocampus to the entorhinal cortex, thus facilitating the process of consolidation of separate memory traces.


Behavioural Brain Research | 1989

The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey

Michael E. Hasselmo; Edmund T. Rolls; Gordon C. Baylis

Neurophysiological studies have shown that some neurons in the cortex in the superior temporal sulcus and the inferior temporal gyrus of macaque monkeys respond to faces. To determine if facial factors such as expression and identity are encoded independently by face-responsive neurons, 45 neurons were tested on a stimulus set depicting 3 monkeys with 3 expressions each. As tested on a two-way ANOVA, 15 neurons showed response differences to different identities independently of expression, and 9 neurons showed responses to different expressions independently of identity. Three neurons showed significant effects of both factors. Six of the neurons with responses related to expression responded primarily to calm faces, while 2 responded primarily to threat faces. Of a further set of 31 neurons tested on pairs of different expressions, 6 showed strong responses to open-mouth fear or threat expressions, while 2 showed stronger responses to calm faces than threat expressions. Neurons responsive to expression were found primarily in the cortex in the superior temporal sulcus, while neurons responsive to identity were found primarily in the inferior temporal gyrus. The difference in anatomical distribution was statistically significant. This supports the possibility that specific impairments of the recognition of the identity of a face and of its expression in man are due to damage to or disconnection of separate neuronal substrates.


Neural Computation | 2002

A proposed function for Hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning

Michael E. Hasselmo; Clara Bodelón; Bradley P. Wyble

The theta rhythm appears in the rat hippocampal electroencephalogram during exploration and shows phase locking to stimulus acquisition. Lesions that block theta rhythm impair performance in tasks requiring reversalofpriorlearning, includingreversalinaT-maze, whereassociations between one arm location and food reward need to be extinguished in favor of associations between the opposite arm location and food reward. Here, a hippocampal model shows how theta rhythm could be important for reversal in this task by providing separate functional phases during each 100-300 msec cycle, consistent with physiological data. In the model, effective encoding of new associations occurs in the phase when synaptic input from entorhinal cortex is strong and long-term potentiation (LTP) of excitatory connections arising from hippocampal region CA3 is strong, but synaptic currents arising from region CA3 input are weak (to prevent interference from prior learned associations). Retrieval of old associations occurs in the phase when entorhinal input is weak and synaptic input from region CA3 is strong, but when depotentiation occurs at synapses from CA3 (to allow extinction of prior learned associations that do not match current input). These phasic changes require that LTP at synapses arising from region CA3 should be strongest at the phase when synaptic transmission at these synapses is weakest. Consistent with these requirements, our recent data show that synaptic transmission in stratum radiatum is weakest at the positive peak of local theta, which is when previous data show that induction of LTP is strongest in this layer.


Behavioural Brain Research | 1995

Neuromodulation and cortical function: modeling the physiological basis of behavior.

Michael E. Hasselmo

Neuromodulators including acetylcholine, norepinephrine, serotonin, dopamine and a range of peptides alter the processing characteristics of cortical networks through effects on excitatory and inhibitory synaptic transmission, on the adaptation of cortical pyramidal cells, on membrane potential, on the rate of synaptic modification, and on other cortical parameters. Computational models of self-organization and associative memory function in cortical structures such as the hippocampus, piriform cortex and neocortex provide a theoretical framework in which the role of these neuromodulatory effects can be analyzed. Neuromodulators such as acetylcholine and norepinephrine appear to enhance the influence of synapses from afferent fibers arising outside the cortex relative to the synapses of intrinsic and association fibers arising from other cortical pyramidal cells. This provides a continuum between a predominant influence of external stimulation to a predominant influence of internal recall (extrinsic vs. intrinsic). Modulatory influence along this continuum may underlie effects described in terms of learning and memory, signal to noise ratio, and attention.


Trends in Neurosciences | 1998

The hippocampus as an associator of discontiguous events.

Gene V. Wallenstein; Michael E. Hasselmo; Howard Eichenbaum

The hippocampus has long been thought to be an important cortical region for associative learning and memory. After several decades of experimental and theoretical studies, a picture is emerging slowly of the generic types of learning tasks that this neural structure might be essential for solving. Recently, there have been attempts to unify electrophysiological and behavioral observations from rodents performing spatial learning tasks with data from primates performing various tests of conditional and discrimination learning. Most of these theoretical frameworks have rested primarily on behavioral observations. Complementing these perspectives,we ask the question: given certain physiological constraints at the neuronal and cortical level, what class of learning problems is the hippocampus, in particular, most suited to solve? From a computational point of view, we argue that this structure is involved most critically in learning and memory tasks in which discontiguous items must be associated, in terms of their temporal or spatial positioning, or both.


The Journal of Neuroscience | 1996

NMDA-dependent modulation of CA1 local circuit inhibition

Heinz Grunze; Donald G. Rainnie; Michael E. Hasselmo; Eddie Barkai; Elizabeth F. Hearn; Robert W. McCarley; Robert W. Greene

Whole-cell and extracellular recording techniques were used to examine local circuit inhibition in the CA1 region of the rat hippocampus in vitro. Activation, primarily of the recurrent inhibitory circuit by alvear stimulation, elicited an IPSP in pyramidal neurons that was dependent, in part, on NMDA receptor activation. Application of a tetanizing stimulus to the alveus evoked long-term potentiation (LTP) of the intracellularly recorded recurrent IPSPs. This LTP also was NMDA- dependent and was more sensitive to blockade by the NMDA antagonists 2- amino-5-phosphonovalerate (APV) and N-acetyl-aspartyl-glutamate, than the excitatory LTP produced by Schaffer collateral stimulation. With regard to APV, the sensitivity of inhibitory LTP was an order of magnitude greater. A biophysical simulation of hippocampal CA1 circuitry was used in a model of learned pattern recognition that included LTP in both excitatory and inhibitory recurrent circuits. In this model, selective blockade of inhibitory LTP produced aberrant spread of lateral excitation, resulting in confusion of normally distinguishable patterns of neuronal activity. Consideration is given to the possibility that selective disruption of NMDA-dependent modulation of local circuit inhibition may serve as a model for some aspects of dysfunction associated with NMDA-antagonist exposure and schizophrenia.


Neuropsychopharmacology | 2011

Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition

Michael E. Hasselmo; Martin Sarter

As indicated by the profound cognitive impairments caused by cholinergic receptor antagonists, cholinergic neurotransmission has a vital role in cognitive function, specifically attention and memory encoding. Abnormally regulated cholinergic neurotransmission has been hypothesized to contribute to the cognitive symptoms of neuropsychiatric disorders. Loss of cholinergic neurons enhances the severity of the symptoms of dementia. Cholinergic receptor agonists and acetylcholinesterase inhibitors have been investigated for the treatment of cognitive dysfunction. Evidence from experiments using new techniques for measuring rapid changes in cholinergic neurotransmission provides a novel perspective on the cholinergic regulation of cognitive processes. This evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance. Furthermore, the evidence indicates cholinergic induction of evoked intrinsic, persistent spiking mechanisms for active maintenance of sensory input, and planned responses. Models have been developed to describe the neuronal mechanisms underlying the transient modulation of cortical target circuits by cholinergic activity. These models postulate specific locations and roles of nicotinic and muscarinic acetylcholine receptors and that cholinergic neurotransmission is controlled in part by (cortical) target circuits. The available evidence and these models point to new principles governing the development of the next generation of cholinergic treatments for cognitive disorders.


Progress in Brain Research | 2004

High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation.

Michael E. Hasselmo; Jill McGaughy

Publisher Summary This chapter focuses on how the different physiological effects of acetylcholine could interact to alter specific functional properties of the cortex. Computational modeling demonstrates that the combined physiological effects of acetylcholine serve to enhance the influence of afferent input on neuronal spiking activity, while reducing the influence of internal and feedback processing. Computational models also demonstrate how these network properties can be interpreted functionally as both enhancing attention to sensory stimuli and enhancing the encoding of new memories. The levels of acetylcholine in the hippocampus and neocortex change dramatically during different stages of waking and sleep. High levels of acetylcholine during active waking may set appropriate dynamics for attention to sensory input or encoding of new information. At the same time, the cholinergic suppression of excitatory feedback connections prevents interference from internal processing of previously stored information. Lower levels of acetylcholine during quiet waking and slow wave sleep may provide a release from this suppression of excitatory feedback, allowing stronger spread of activity within the hippocampus and from hippocampus to entorhinal cortex, thereby facilitating the process of consolidation of separate memory traces.

Collaboration


Dive into the Michael E. Hasselmo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angel Alonso

Montreal Neurological Institute and Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge