Eric Allemand
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric Allemand.
Current Opinion in Genetics & Development | 2008
Eric Allemand; Eric Batsché; Christian Muchardt
Alternative splicing allows for one gene to encode multiple proteins. This mechanism is regulated by dedicated splicing factors. However, recent data have shown that these factors contact the RNA polymerase II as well as transcription factors and chromatin remodeling enzymes present inside the coding region of the gene. These observations favor a model where cotranscriptional splice decisions are assisted by factors recruited at the promoter or by the elongating polymerase. We also suggest that chromatin could function as an RNA-binding matrix displaying the immature transcripts to the spliceosomes.
PLOS ONE | 2007
Michelle L. Hastings; Eric Allemand; Dominik M. Duelli; Michael P. Myers; Adrian R. Krainer
Pre-mRNA splicing is a crucial step in gene expression, and accurate recognition of splice sites is an essential part of this process. Splice sites with weak matches to the consensus sequences are common, though it is not clear how such sites are efficiently utilized. Using an in vitro splicing-complementation approach, we identified PUF60 as a factor that promotes splicing of an intron with a weak 3′ splice-site. PUF60 has homology to U2AF65, a general splicing factor that facilitates 3′ splice-site recognition at the early stages of spliceosome assembly. We demonstrate that PUF60 can functionally substitute for U2AF65 in vitro, but splicing is strongly stimulated by the presence of both proteins. Reduction of either PUF60 or U2AF65 in cells alters the splicing pattern of endogenous transcripts, consistent with the idea that regulation of PUF60 and U2AF65 levels can dictate alternative splicing patterns. Our results indicate that recognition of 3′ splice sites involves different U2AF-like molecules, and that modulation of these general splicing factors can have profound effects on splicing.
Journal of Cell Biology | 2006
Hiroshi Kimura; Nanako Takizawa; Eric Allemand; Tetsuya Hori; Francisco J. Iborra; Naohito Nozaki; Michiko Muraki; Masatoshi Hagiwara; Adrian R. Krainer; Tatsuo Fukagawa; Katsuya Okawa
In eukaryotic nuclei, DNA is wrapped around a protein octamer composed of the core histones H2A, H2B, H3, and H4, forming nucleosomes as the fundamental units of chromatin. The modification and deposition of specific histone variants play key roles in chromatin function. In this study, we established an in vitro system based on permeabilized cells that allows the assembly and exchange of histones in situ. H2A and H2B, each tagged with green fluorescent protein (GFP), are incorporated into euchromatin by exchange independently of DNA replication, and H3.1-GFP is assembled into replicated chromatin, as found in living cells. By purifying the cellular factors that assist in the incorporation of H2A–H2B, we identified protein phosphatase (PP) 2C γ subtype (PP2Cγ/PPM1G) as a histone chaperone that binds to and dephosphorylates H2A–H2B. The disruption of PP2Cγ in chicken DT40 cells increased the sensitivity to caffeine, a reagent that disturbs DNA replication and damage checkpoints, suggesting the involvement of PP2Cγ-mediated histone dephosphorylation and exchange in damage response or checkpoint recovery in higher eukaryotes.
Molecular and Cellular Biology | 2010
Rahul Sinha; Eric Allemand; Zuo Zhang; Rotem Karni; Michael P. Myers; Adrian R. Krainer
ABSTRACT Alternative splicing and posttranslational modifications (PTMs) are major sources of protein diversity in eukaryotic proteomes. The SR protein SF2/ASF is an oncoprotein that functions in pre-mRNA splicing, with additional roles in other posttranscriptional and translational events. Functional studies of SR protein PTMs have focused exclusively on the reversible phosphorylation of Ser residues in the C-terminal RS domain. We confirmed that human SF2/ASF is methylated at residues R93, R97, and R109, which were identified in a global proteomic analysis of Arg methylation, and further investigated whether these methylated residues regulate the properties of SF2/ASF. We show that the three arginines additively control the subcellular localization of SF2/ASF and that both the positive charge and the methylation state are important. Mutations that block methylation and remove the positive charge result in the cytoplasmic accumulation of SF2/ASF. The consequent decrease in nuclear SF2/ASF levels prevents it from modulating the alternative splicing of target genes, results in higher translation stimulation, and abrogates the enhancement of nonsense-mediated mRNA decay. This study addresses the mechanisms by which Arg methylation and the associated positive charge regulate the activities of SF2/ASF and emphasizes the significance of localization control for an oncoprotein with multiple functions in different cellular compartments.
Journal of Virology | 2008
Vladimir Majerciak; Koji Yamanegi; Eric Allemand; Michael J. Kruhlak; Adrian R. Krainer; Zhi-Ming Zheng
ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) ORF57 facilitates the expression of both intronless viral ORF59 genes and intron-containing viral K8 and K8.1 genes (V. Majerciak, N. Pripuzova, J. P. McCoy, S. J. Gao, and Z. M. Zheng, J. Virol. 81:1062-1071, 2007). In this study, we showed that disruption of ORF57 in a KSHV genome led to increased accumulation of ORF50 and K8 pre-mRNAs and reduced expression of ORF50 and K-bZIP proteins but had no effect on latency-associated nuclear antigen (LANA). Cotransfection of ORF57 and K8β cDNA, which retains a suboptimal intron of K8 pre-mRNA due to alternative splicing, promoted RNA splicing of K8β and production of K8α (K-bZIP). Although Epstein-Barr virus EB2, a closely related homolog of ORF57, had a similar activity in the cotransfection assays, herpes simplex virus type 1 ICP27 was inactive. This enhancement of RNA splicing by ORF57 correlates with the intact N-terminal nuclear localization signal motifs of ORF57 and takes place in the absence of other viral proteins. In activated KSHV-infected B cells, KSHV ORF57 partially colocalizes with splicing factors in nuclear speckles and assembles into spliceosomal complexes in association with low-abundance viral ORF50 and K8 pre-mRNAs and essential splicing components. The association of ORF57 with snRNAs occurs by ORF57-Sm protein interaction. We also found that ORF57 binds K8β pre-mRNAs in vitro in the presence of nuclear extracts. Collectively our data indicate that KSHV ORF57 functions as a novel splicing factor in the spliceosome-mediated splicing of viral RNA transcripts.
Nature Structural & Molecular Biology | 2007
Eric Allemand; Michelle L. Hastings; Michael V. Murray; Michael P. Myers; Adrian R. Krainer
Kinases and phosphatases participate in precursor messenger RNA (pre-mRNA) splicing regulation, but their precise roles and the identities of their cofactors and substrates remain poorly understood. The human Ser/Thr phosphatase PP2Cγ promotes spliceosome assembly. We show that PP2Cγs distinctive acidic domain is essential for its activity in splicing and interacts with YB-1, a spliceosome-associated factor. Moreover, PP2Cγ is a phosphoprotein in vivo, and its acidic domain is phosphorylated under splicing conditions in vitro. PP2Cγ phosphorylation enhances its interaction with YB-1 and is reversed by the phosphatase in cis. PP2Cγ knockdown leaves constitutive splicing unaffected but inhibits cell proliferation and affects alternative splicing of CD44, a YB-1 target. This effect on splicing regulation is mediated by PP2Cγs acidic domain, which is essential to promote inclusion of CD44 exons v4 and v5 in vivo. We propose that PP2Cγ modulates alternative splicing of specific pre-mRNAs coregulated by YB-1.
Cell Reports | 2013
Efrat Shema-Yaacoby; Miroslav Nikolov; Mahmood Haj-Yahya; Peter Siman; Eric Allemand; Yuki Yamaguchi; Christian Muchardt; Henning Urlaub; Ashraf Brik; Moshe Oren; Wolfgang Fischle
Chromatin posttranslational modifications (PTMs), including monoubiquitylation of histone H2B on lysine 120 (H2Bub1), play a major role in regulating genome functions. To elucidate the molecular mechanisms of H2Bub1 activity, a chromatin template uniformly containing H2Bub1 was used as an affinity matrix to identify preferentially interacting human proteins. Over 90 such factors were found, including proteins and protein complexes associated with transcription, RNA posttranscriptional modifications, and DNA replication and repair. Notably, we found that the SWI/SNF chromatin remodeling complex associates preferentially with H2Bub1-rich chromatin. Moreover, SWI/SNF is required for optimal transcription of a subset of genes that are selectively dependent on H2Bub1. Our findings substantially expand the known H2Bub1 interactome and provide insights into the functions of this PTM in mammalian gene regulation.
Science Signaling | 2012
Delphine Cougot; Eric Allemand; Lise Rivière; Shirine Benhenda; Karine Duroure; Florence Levillayer; Christian Muchardt; Marie-Annick Buendia; Christine Neuveut
A virus prolongs the activity of a host transcription factor to promote expression of viral genes. Inhibiting Dephosphorylation for Viral DNA Transcription The transcription factor CREB [cyclic adenosine monophosphate (cAMP) response element–binding protein] is phosphorylated and activated downstream of cAMP production, whereas it is dephosphorylated and inactivated by protein phosphatase 1 (PP1). Cougot et al. previously showed that HBx, a protein produced by hepatitis B virus (HBV), increases the transcription of CREB target genes. Here, the authors show that HBV co-opts CREB in the transcription of its own DNA. Phosphorylation of CREB (and thus activity) recruited on HBV DNA was prolonged, an effect that was mediated by inhibition of PP1 activity by HBx. Because persistent liver infection with HBV is a risk factor for developing hepatocellular carcinoma, these results suggest that targeting HBx could be a way to attenuate HBV infection and reduce the risk of viral-induced cancer. The regulatory protein HBx is essential for hepatitis B virus (HBV) replication in vivo and for transcription of the episomal HBV genome. We previously reported that in infected cells HBx activates genes targeted by the transcription factor CREB [cyclic adenosine monophosphate (cAMP) response element–binding protein]. cAMP induces phosphorylation and activation of CREB, and CREB inactivation is promoted by protein phosphatase 1 (PP1), which binds to CREB through histone deacetylase 1 (HDAC1). We showed that CREB was recruited to HBV DNA. Phosphorylation induced by cAMP had a longer half-life when CREB was bound to the episomal HBV genome compared to when it was bound to the promoter of a host target gene not regulated by HBx, suggesting that the virus has developed a mechanism to favor its own transcription. This mechanism required HBx, which interacted with and inhibited PP1 to extend the half-life of CREB phosphorylation. Silencing of PP1 rescued replication of an HBx-deficient HBV genome, suggesting that HBx enhances viral transcription in part by neutralizing PP1 activity. Our results illustrate a previously unknown mechanism of HBV transcriptional activation by HBx in which HBx interferes with the inactivation of CREB by the PP1 and HDAC1 complex.
PLOS Genetics | 2016
Eric Allemand; Michael P. Myers; Jose Garcia-Bernardo; Annick Harel-Bellan; Adrian R. Krainer; Christian Muchardt
Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny. Finally, a direct assessment of the impact of chromatin on splicing using an in vitro co-transcriptional splicing assay with pre-mRNAs transcribed from a nucleosomal template, demonstrated that chromatin impacts nascent pre-mRNP in their competence for splicing. Altogether, our data show that numerous chromatin factors associated or not with the spliceosome can affect the outcome of splicing, possibly as a function of the local chromatin environment that by default interferes with the efficiency of splicing.
Nucleic Acids Research | 2015
Oriane Mauger; Roscoe Klinck; Benoit Chabot; Christian Muchardt; Eric Allemand; Eric Batsché
Alternative splicing is the main source of proteome diversity. Here, we have investigated how alternative splicing affects the function of two human histone methyltransferases (HMTase): G9A and SUV39H2. We show that exon 10 in G9A and exon 3 in SUV39H2 are alternatively included in a variety of tissues and cell lines, as well as in a different species. The production of these variants is likely tightly regulated because both constitutive and alternative splicing factors control their splicing profiles. Based on this evidence, we have assessed the link between the inclusion of these exons and the activity of both enzymes. We document that these HMTase genes yield several protein isoforms, which are likely issued from alternative splicing regulation. We demonstrate that inclusion of SUV39H2 exon 3 is a determinant of the stability, the sub-nuclear localization, and the HMTase activity. Genome-wide expression analysis further revealed that alternative inclusion of SUV39H2 exon 3 differentially modulates the expression of target genes. Our data also suggest that a variant of G9A may display a function that is independent of H3K9 methylation. Our work emphasizes that expression and function of genes are not collinear; therefore alternative splicing must be taken into account in any functional study.
Collaboration
Dive into the Eric Allemand's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputs