Eric B. Kmiec
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric B. Kmiec.
Cell | 1982
Eric B. Kmiec; William K. Holloman
A protein from mitotic cells of Ustilago maydis was purified on the basis of its ability to reanneal complementary single strands of DNA. The protein catalyzed the uptake of linear single strands by super-helical DNA, but only in reactions with homologous combinations of single-strand fragments and super-helical DNA from phages phi X174 and fd. No reaction occurred with heterologous combinations. The protein also efficiently paired circular single strands and linear duplex DNA molecules. The product was a joint molecule in which the circular single strand displaced one strand of the duplex. Efficient pairing depended upon ATP, and ATPase activity was found associated with the purified protein. ATP-dependent reannealing of complementary single strands was not detectable in the rec1 mutant of Ustilago, which is deranged in meiotic recombination, as complete tetrads are rare, and is defective in radiation-induced mitotic gene conversion.
Cell | 1985
Eric B. Kmiec; Kimon J. Angelides; William K. Holloman
Left-handed Z-DNA binds tightly to Ustilago rec1 protein. The binding reaction is strongly dependent on ATP, but complexes formed are rapidly dissociated by ADP. The parallel between the kinetics of Z-DNA binding and the synaptic pairing reaction leading to paranemic joint molecules suggests that formation of nascent heteroduplex structures in recombination is coupled with formation of left-handed Z-like DNA on the protein. Equilibrium and kinetic studies show that rec1 protein appears to have a strong Z-DNA binding site that binds Z-DNA 75 times tighter than the B form of the DNA. We propose that DNA with a structure approximated best by a left-handed Z-DNA conformation is a key intermediate in homologous pairing promoted by rec1 protein.
Cell | 1984
Eric B. Kmiec; William K. Holloman
Ustilago rec 1 protein pairs homologous DNA molecules by promoting both synapsis and strand transfer. Complexes formed with rec 1 protein and a homologous combination of single-stranded and duplex DNA that appear to be synaptic structures can be detected by use of a nitrocellulose filter assay. The nascent heteroduplex formed during synapsis is a paranemic joint in which the single-stranded DNA pairs, but does not interwind, with its complement in the duplex molecule. Formation of the paranemic joint is accompanied by duplex unwinding and genesis of left-handed Z-DNA.
Cell | 1983
Eric B. Kmiec; Paul E. Kroeger; Michael J. Brougham; William K. Holloman
We studied the formation of linked circular DNA molecules promoted by the combined action of rec 1 protein and type I topoisomerase of Ustilago maydis. When ATP was added as cofactor to reactions containing rec 1 protein, pairs of homologous circular DNA molecules became linked after addition of topoisomerase. Closed circular duplex molecules could be joined at homologous sites with circular single-stranded molecules or with other circular duplex molecules, provided that homologous single-stranded DNA fragments or RNA polymerase and nucleoside triphosphates were also added. Complexes formed were topologically linked through regions of heteroduplex DNA. When the analog adenylyl-imidodiphosphate was substituted for ATP, nonhomologous pairs of circular DNA molecules became linked.
Archive | 1999
Eric B. Kmiec; Howard B. Gamper; Allyson Cole-Strauss
Cell | 1983
Eric B. Kmiec; William K. Holloman
Archive | 1999
Eric B. Kmiec; Howard B. Gamper; Allyson Cole-Strauss
Cell | 1988
Eric B. Kmiec
Archive | 2003
Howard B. Gamper; Eric B. Kmiec; Richard J. Bartlett
Archive | 2002
Howard B. Gamper; Eric B. Kmiec; Michael C. Rice; Michael G Usher