Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric B. Knudsen is active.

Publication


Featured researches published by Eric B. Knudsen.


Journal of Neurophysiology | 2011

Functional role of exercise-induced cortical organization of sensorimotor cortex after spinal transection

Tina Kao; Jed S. Shumsky; Eric B. Knudsen; Marion Murray; Karen A. Moxon

Spinal cord transection silences neuronal activity in the deafferented cortex to cutaneous stimulation of the body and untreated animals show no improvement in functional outcome (weight-supported stepping) with time after lesion. However, adult rats spinalized since neonates that receive exercise therapy exhibit greater functional recovery and exhibit more cortical reorganization. This suggests that the change in the somatotopic organization of the cortex may be functionally relevant. To address this issue, we chronically implanted arrays of microwire electrodes into the infragranular layers of the hindlimb somatosensory cortex of adult rats neonatally transected at T8/T9 that received exercise training (spinalized rats) and of normal adult rats. Multiple, single neuron activity was recorded during passive sensory stimulation, when the animals were anesthetized, and during active sensorimotor stimulation during treadmill-induced locomotion when the animal was awake and free to move. Our results demonstrate that cortical neurons recorded from the spinalized rats that received exercise 1) had higher spontaneous firing rates, 2) were more likely to respond to both sensory and sensorimotor stimulations of the forelimbs, and also 3) responded with more spikes per stimulus than those recorded from normal rats, suggesting expansion of the forelimb map into the hindlimb map. During treadmill locomotion the activity of neurons recorded from neonatally spinalized rats was greater during weight-supported steps on the treadmill compared with the neuronal activity during nonweight supported steps. We hypothesize that this increased activity is related to the ability of the animal to take weight supported steps and that, therefore, these changes in cortical organization after spinal cord injury are relevant for functional recovery.


PLOS ONE | 2013

Passive exercise of the hind limbs after complete thoracic transection of the spinal cord promotes cortical reorganization.

Alessandro Graziano; Guglielmo Foffani; Eric B. Knudsen; Jed S. Shumsky; Karen A. Moxon

Physical exercise promotes neural plasticity in the brain of healthy subjects and modulates pathophysiological neural plasticity after sensorimotor loss, but the mechanisms of this action are not fully understood. After spinal cord injury, cortical reorganization can be maximized by exercising the non-affected body or the residual functions of the affected body. However, exercise per se also produces systemic changes – such as increased cardiovascular fitness, improved circulation and neuroendocrine changes – that have a great impact on brain function and plasticity. It is therefore possible that passive exercise therapies typically applied below the level of the lesion in patients with spinal cord injury could put the brain in a more plastic state and promote cortical reorganization. To directly test this hypothesis, we applied passive hindlimb bike exercise after complete thoracic transection of the spinal cord in adult rats. Using western blot analysis, we found that the level of proteins associated with plasticity – specifically ADCY1 and BDNF – increased in the somatosensory cortex of transected animals that received passive bike exercise compared to transected animals that received sham exercise. Using electrophysiological techniques, we then verified that neurons in the deafferented hindlimb cortex increased their responsiveness to tactile stimuli delivered to the forelimb in transected animals that received passive bike exercise compared to transected animals that received sham exercise. Passive exercise below the level of the lesion, therefore, promotes cortical reorganization after spinal cord injury, uncovering a brain-body interaction that does not rely on intact sensorimotor pathways connecting the exercised body parts and the brain.


PLOS ONE | 2012

Decoding hindlimb movement for a brain machine interface after a complete spinal transection.

Anitha Manohar; Robert D. Flint; Eric B. Knudsen; Karen A. Moxon

Stereotypical locomotor movements can be made without input from the brain after a complete spinal transection. However, the restoration of functional gait requires descending modulation of spinal circuits to independently control the movement of each limb. To evaluate whether a brain-machine interface (BMI) could be used to regain conscious control over the hindlimb, rats were trained to press a pedal and the encoding of hindlimb movement was assessed using a BMI paradigm. Off-line, information encoded by neurons in the hindlimb sensorimotor cortex was assessed. Next neural population functions, or weighted representations of the neuronal activity, were used to replace the hindlimb movement as a trigger for reward in real-time (on-line decoding) in three conditions: while the animal could still press the pedal, after the pedal was removed and after a complete spinal transection. A novel representation of the motor program was learned when the animals used neural control to achieve water reward (e.g. more information was conveyed faster). After complete spinal transection, the ability of these neurons to convey information was reduced by more than 40%. However, this BMI representation was relearned over time despite a persistent reduction in the neuronal firing rate during the task. Therefore, neural control is a general feature of the motor cortex, not restricted to forelimb movements, and can be regained after spinal injury.


Experimental Neurology | 2013

Serotonergic pharmacotherapy promotes cortical reorganization after spinal cord injury

Patrick D. Ganzer; Karen A. Moxon; Eric B. Knudsen; Jed S. Shumsky

Cortical reorganization plays a significant role in recovery of function after injury of the central nervous system. The neural mechanisms that underlie this reorganization may be the same as those normally responsible for skilled behaviors that accompany extended sensory experience and, if better understood, could provide a basis for further promoting recovery of function after injury. The work presented here extends studies of spontaneous cortical reorganization after spinal cord injury to the role of rehabilitative strategies on cortical reorganization. We use a complete spinal transection model to focus on cortical reorganization in response to serotonergic (5-HT) pharmacotherapy without any confounding effects from spared fibers left after partial lesions. 5-HT pharmacotherapy has previously been shown to improve behavioral outcome after SCI but the effect on cortical organization is unknown. After a complete spinal transection in the adult rat, 5-HT pharmacotherapy produced more reorganization in the sensorimotor cortex than would be expected by transection alone. This reorganization was dose dependent, extended into intact (forelimb) motor cortex, and, at least in the hindlimb sensorimotor cortex, followed a somatotopic arrangement. Animals with the greatest behavioral outcome showed the greatest extent of cortical reorganization suggesting that the reorganization is likely to be in response to both direct effects of 5-HT on cortical circuits and indirect effects in response to the behavioral improvement below the level of the lesion.


The Journal of Neuroscience | 2014

Dissociating Movement from Movement Timing in the Rat Primary Motor Cortex

Eric B. Knudsen; Marissa E. Powers; Karen A. Moxon

Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions.


Frontiers in Systems Neuroscience | 2012

Encoding of temporal intervals in the rat hindlimb sensorimotor cortex.

Eric B. Knudsen; Robert D. Flint; Karen A. Moxon

The gradual buildup of neural activity over experimentally imposed delay periods, termed climbing activity, is well documented and is a potential mechanism by which interval time is encoded by distributed cortico-thalamico-striatal networks in the brain. Additionally, when multiple delay periods are incorporated, this activity has been shown to scale its rate of climbing proportional to the delay period. However, it remains unclear whether these patterns of activity occur within areas of motor cortex dedicated to hindlimb movement. Moreover, the effects of behavioral training (e.g., motor tasks) under different reward conditions but with similar behavioral output are not well addressed. To address this, we recorded activity from the hindlimb sensorimotor cortex (HLSMC) of two groups of rats performing a skilled hindlimb press task. In one group, rats were trained only to a make a valid press within a finite window after cue presentation for reward (non-interval trained, nIT; n = 5), while rats in the second group were given duration-specific cues in which they had to make presses of either short or long duration to receive reward (interval trained, IT; n = 6). Using perievent time histogram (PETH) analyses, we show that cells recorded from both groups showed climbing activity during the task in similar proportions (35% IT and 47% nIT), however, only climbing activity from IT rats was temporally scaled to press duration. Furthermore, using single trial decoding techniques (Wiener filter), we show that press duration can be inferred using climbing activity from IT animals (R = 0.61) significantly better than nIT animals (R = 0.507, p < 0.01), suggesting IT animals encode press duration through temporally scaled climbing activity. Thus, if temporal intervals are behaviorally relevant then the activity of climbing neurons is temporally scaled to encode the passage of time.


international conference of the ieee engineering in medicine and biology society | 2011

Skilled hindlimb reaching task in rats as a platform for a brain-machine interface to restore motor function after complete spinal cord injury

Eric B. Knudsen; Karen A. Moxon; Elliot B. Sturgis; Jed S. Shumsky

Behavioral tasks utilized as models for decoding neural activity for use in brain-machine interfaces are constrained primarily to forelimb tasks or locomotion. We present here our methodology for training adult rats in a novel skilled hindlimb ‘reaching’ task in which the animal is trained to make different types of hindlimb movements. 6 adult Long-Evans rats were trained to make variable duration (<1 or >1.5 s) hindlimb presses cued by a spatially-independent visual cue. 5 of 6 animals (83.3%) were able to learn the task to proficiency. The training paradigm introduced here serves as a platform to investigate the ability of the animal to transfer motor cortical activity in response to a cue originally generated during normal movments, to a novel context in the absecense of movement and ultimately after complete mid-thoracic spinal cord transection. We also present preliminary results of offline classification of neural activity during trial performance for two trained animals.


Neurorehabilitation and Neural Repair | 2016

Interactive Effects Between Exercise and Serotonergic Pharmacotherapy on Cortical Reorganization After Spinal Cord Injury.

Guglielmo Foffani; Jed S. Shumsky; Eric B. Knudsen; Patrick D. Ganzer; Karen A. Moxon

Background. In rat models of spinal cord injury, at least 3 different strategies can be used to promote long-term cortical reorganization: (1) active exercise above the level of the lesion; (2) passive exercise below the level of the lesion; and (3) serotonergic pharmacotherapy. Whether and how these potential therapeutic strategies—and their underlying mechanisms of action—interact remains unknown. Methods. In spinally transected adult rats, we compared the effects of active exercise above the level of the lesion (treadmill), passive exercise below the level of the lesion (bike), serotonergic pharmacotherapy (quipazine), and combinations of the above therapies (bike+quipazine, treadmill+quipazine, bike+treadmill+quipazine) on long-term cortical reorganization (9 weeks after the spinal transection). Cortical reorganization was measured as the percentage of cells recorded in the deafferented hindlimb cortex that responded to tactile stimulation of the contralateral forelimb. Results. Bike and quipazine are “competing” therapies for cortical reorganization, in the sense that quipazine limits the cortical reorganization induced by bike, whereas treadmill and quipazine are “collaborative” therapies, in the sense that the reorganization induced by quipazine combined with treadmill is greater than the reorganization induced by either quipazine or treadmill. Conclusions. These results uncover the interactive effects between active/passive exercise and serotonergic pharmacotherapy on cortical reorganization after spinal cord injury, emphasizing the importance of understanding the effects of therapeutic strategies in spinal cord injury (and in other forms of deafferentation) from an integrated system-level approach.


international ieee/embs conference on neural engineering | 2011

Role of neuronal plasticity after spinal cord injury for neurorobotic control

Anitha Manohar; Robert D. Flint; Eric B. Knudsen; Karen A. Moxon

The design of a brain machine interface for the restoration of lower limb control after spinal cord injury involves the restoration of cortical control of the spinal circuits responsible for this movement. However little is known about how these cortical circuits are modified by spinal cord injury. For this purpose we trained rats to perform a skilled hindlimb task and examined how the activity of the neurons in the hindlimb cortex encodes this movement. In this paper we used a method to quantitatively measure the amount of information encoded by the neuronal ensembles about the specific kinematics of movement. Our results show that the cortical firing patterns can encode for intention to move with or without actual limb movement, before and after a complete spinal transection.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2012

Controlled Unilateral Isometric Force Generated by Epidural Spinal Cord Stimulation in the Rat Hindlimb

Jaimie B. Dougherty; James M. Goodman; Eric B. Knudsen; Karen A. Moxon

Epidural electrical stimulation (EES) has often been used to restore stereotypic locomotor movements after spinal cord injury (SCI). However, restoring freeform movement requires specific force generation and independently controlled limbs for changing environments. Therefore, a second stimulus location would be advantageous, controlling force separately from locomotor movements. In normal and transected rats treated with mineral oil or saline, EES was performed at L1-L6 vertebral levels, caudal to spinal segments typical for locomotion, identifying secondary sites capable of activating hindlimb musculature, producing unilateral force at the paw. Threshold for generating force was identified and stimulation amplitude and duration varied to assess effects on evoked forces. Stimulation at L2 and L3 vertebral levels elicited negative vertical forces from extensor musculature while stimulation at L4 and L5 elicited positive vertical forces from flexion musculature. Thresholds were unchanged with transection or hydration method. Peak force magnitude was significantly correlated to stimulus amplitude, and response duration significantly correlated to stimulus duration in all animals. No differences were found in correlation coefficients or slopes of the regression for force or duration analyses with spinal condition or hydration method. This model demonstrates the ability to induce controlled forces with EES after SCI.

Collaboration


Dive into the Eric B. Knudsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge