Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Flint is active.

Publication


Featured researches published by Robert D. Flint.


Journal of Neural Engineering | 2013

Long term, stable brain machine interface performance using local field potentials and multiunit spikes.

Robert D. Flint; Zachary A. Wright; Michael R. Scheid; Marc W. Slutzky

OBJECTIVE Brain machine interfaces (BMIs) have the potential to restore movement to people with paralysis. However, a clinically-viable BMI must enable consistently accurate control over time spans ranging from years to decades, which has not yet been demonstrated. Most BMIs that use single-unit spikes as inputs will experience degraded performance over time without frequent decoder re-training. Two other signals, local field potentials (LFPs) and multi-unit spikes (MSPs), may offer greater reliability over long periods and better performance stability than single-unit spikes. Here, we demonstrate that LFPs can be used in a biomimetic BMI to control a computer cursor. APPROACH We implanted two rhesus macaques with intracortical microelectrodes in primary motor cortex. We recorded LFP and MSP signals from the monkeys while they performed a continuous reaching task, moving a cursor to randomly-placed targets on a computer screen. We then used the LFP and MSP signals to construct biomimetic decoders for control of the cursor. MAIN RESULTS Both monkeys achieved high-performance, continuous control that remained stable or improved over nearly 12 months using an LFP decoder that was not retrained or adapted. In parallel, the monkeys used MSPs to control a BMI without retraining or adaptation and had similar or better performance, and that predominantly remained stable over more than six months. In contrast to their stable online control, both LFP and MSP signals showed substantial variability when used offline to predict hand movements. SIGNIFICANCE Our results suggest that the monkeys were able to stabilize the relationship between neural activity and cursor movement during online BMI control, despite variability in the relationship between neural activity and hand movements.


Journal of Neural Engineering | 2012

Accurate decoding of reaching movements from field potentials in the absence of spikes

Robert D. Flint; Eric W. Lindberg; Luke R. Jordan; Lee E. Miller; Marc W. Slutzky

The recent explosion of interest in brain-machine interfaces (BMIs) has spurred research into choosing the optimal input signal source for a desired application. The signals with highest bandwidth--single neuron action potentials or spikes--typically are difficult to record for more than a few years after implantation of intracortical electrodes. Fortunately, field potentials recorded within the cortex (local field potentials, LFPs), at its surface (electrocorticograms, ECoG) and at the dural surface (epidural, EFPs) have also been shown to contain significant information about movement. However, the relative performance of these signals has not yet been directly compared. Furthermore, while it is widely postulated, it has not yet been demonstrated that these field potential signals are more durable than spike recordings. The aim of this study was to address both of these questions. We assessed the offline decoding performance of EFPs, LFPs and spikes, recorded sequentially, in primary motor cortex (M1) in terms of their ability to decode the target of reaching movements, as well as the endpoint trajectory. We also examined the decoding performance of LFPs on electrodes that are not recording spikes, compared with the performance when they did record spikes. Spikes were still present on some of the other electrodes throughout this study. We showed that LFPs performed nearly as well as spikes in decoding velocity, and slightly worse in decoding position and in target classification. EFP performance was slightly inferior to that reported for ECoG in humans. We also provided evidence demonstrating that movement-related information in the LFP remains high regardless of the ability to record spikes concurrently on the same electrodes. This is the first study to provide evidence that LFPs retain information about movement in the absence of spikes on the same electrodes. These results suggest that LFPs may indeed remain informative after spike recordings are lost, thereby providing a robust, accurate signal source for BMIs.


Journal of Neurophysiology | 2012

Local field potentials allow accurate decoding of muscle activity

Robert D. Flint; Christian Ethier; Emily R. Oby; Lee E. Miller; Marc W. Slutzky

Local field potentials (LFPs) in primary motor cortex include significant information about reach target location and upper limb movement kinematics. Some evidence suggests that they may be a more robust, longer-lasting signal than action potentials (spikes). Here we assess whether LFPs can also be used to decode upper limb muscle activity, a complex movement-related signal. We record electromyograms from both proximal and distal upper limb muscles from monkeys performing a variety of reach-to-grasp and isometric wrist force tasks. We show that LFPs can be used to decode activity from both proximal and distal muscles with performance rivaling that of spikes. Thus, motor cortical LFPs include information about more aspects of movement than has been previously demonstrated. This provides further evidence suggesting that LFPs could provide a highly informative, long-lasting signal source for neural prostheses.


Journal of Neural Engineering | 2014

Direct classification of all American English phonemes using signals from functional speech motor cortex

Emily M. Mugler; James L. Patton; Robert D. Flint; Zachary A. Wright; Stephan U. Schuele; Joshua M. Rosenow; Jerry J. Shih; Dean J. Krusienski; Marc W. Slutzky

OBJECTIVE Although brain-computer interfaces (BCIs) can be used in several different ways to restore communication, communicative BCI has not approached the rate or efficiency of natural human speech. Electrocorticography (ECoG) has precise spatiotemporal resolution that enables recording of brain activity distributed over a wide area of cortex, such as during speech production. In this study, we sought to decode elements of speech production using ECoG. APPROACH We investigated words that contain the entire set of phonemes in the general American accent using ECoG with four subjects. Using a linear classifier, we evaluated the degree to which individual phonemes within each word could be correctly identified from cortical signal. MAIN RESULTS We classified phonemes with up to 36% accuracy when classifying all phonemes and up to 63% accuracy for a single phoneme. Further, misclassified phonemes follow articulation organization described in phonology literature, aiding classification of whole words. Precise temporal alignment to phoneme onset was crucial for classification success. SIGNIFICANCE We identified specific spatiotemporal features that aid classification, which could guide future applications. Word identification was equivalent to information transfer rates as high as 3.0 bits s(-1) (33.6 words min(-1)), supporting pursuit of speech articulation for BCI control.


NeuroImage | 2014

Extracting kinetic information from human motor cortical signals

Robert D. Flint; Po T. Wang; Zachary A. Wright; Max O. Krucoff; Stephan U. Schuele; Joshua M. Rosenow; Frank P.K. Hsu; Charles Y. Liu; Jack J. Lin; Mona Sazgar; David E. Millett; Susan J. Shaw; Zoran Nenadic; An H. Do; Marc W. Slutzky

Brain machine interfaces (BMIs) have the potential to provide intuitive control of neuroprostheses to restore grasp to patients with paralyzed or amputated upper limbs. For these neuroprostheses to function, the ability to accurately control grasp force is critical. Grasp force can be decoded from neuronal spikes in monkeys, and hand kinematics can be decoded using electrocorticogram (ECoG) signals recorded from the surface of the human motor cortex. We hypothesized that kinetic information about grasping could also be extracted from ECoG, and sought to decode continuously-graded grasp force. In this study, we decoded isometric pinch force with high accuracy from ECoG in 10 human subjects. The predicted signals explained from 22% to 88% (60 ± 6%, mean ± SE) of the variance in the actual force generated. We also decoded muscle activity in the finger flexors, with similar accuracy to force decoding. We found that high gamma band and time domain features of the ECoG signal were most informative about kinetics, similar to our previous findings with intracortical LFPs. In addition, we found that peak cortical representations of force applied by the index and little fingers were separated by only about 4mm. Thus, ECoG can be used to decode not only kinematics, but also kinetics of movement. This is an important step toward restoring intuitively-controlled grasp to impaired patients.


The Journal of Neuroscience | 2016

Long-term stability of motor cortical activity: Implications for brain machine interfaces and optimal feedback control

Robert D. Flint; Michael R. Scheid; Zachary A. Wright; Sara A. Solla; Marc W. Slutzky

The human motor system is capable of remarkably precise control of movements—consider the skill of professional baseball pitchers or surgeons. This precise control relies upon stable representations of movements in the brain. Here, we investigated the stability of cortical activity at multiple spatial and temporal scales by recording local field potentials (LFPs) and action potentials (multiunit spikes, MSPs) while two monkeys controlled a cursor either with their hand or directly from the brain using a brain–machine interface. LFPs and some MSPs were remarkably stable over time periods ranging from 3 d to over 3 years; overall, LFPs were significantly more stable than spikes. We then assessed whether the stability of all neural activity, or just a subset of activity, was necessary to achieve stable behavior. We showed that projections of neural activity into the subspace relevant to the task (the “task-relevant space”) were significantly more stable than were projections into the task-irrelevant (or “task-null”) space. This provides cortical evidence in support of the minimum intervention principle, which proposes that optimal feedback control (OFC) allows the brain to tightly control only activity in the task-relevant space while allowing activity in the task-irrelevant space to vary substantially from trial to trial. We found that the brain appears capable of maintaining stable movement representations for extremely long periods of time, particularly so for neural activity in the task-relevant space, which agrees with OFC predictions. SIGNIFICANCE STATEMENT It is unknown whether cortical signals are stable for more than a few weeks. Here, we demonstrate that motor cortical signals can exhibit high stability over several years. This result is particularly important to brain–machine interfaces because it could enable stable performance with infrequent recalibration. Although we can maintain movement accuracy over time, movement components that are unrelated to the goals of a task (such as elbow position during reaching) often vary from trial to trial. This is consistent with the minimum intervention principle of optimal feedback control. We provide evidence that the motor cortex acts according to this principle: cortical activity is more stable in the task-relevant space and more variable in the task-irrelevant space.


PLOS ONE | 2012

Decoding hindlimb movement for a brain machine interface after a complete spinal transection.

Anitha Manohar; Robert D. Flint; Eric B. Knudsen; Karen A. Moxon

Stereotypical locomotor movements can be made without input from the brain after a complete spinal transection. However, the restoration of functional gait requires descending modulation of spinal circuits to independently control the movement of each limb. To evaluate whether a brain-machine interface (BMI) could be used to regain conscious control over the hindlimb, rats were trained to press a pedal and the encoding of hindlimb movement was assessed using a BMI paradigm. Off-line, information encoded by neurons in the hindlimb sensorimotor cortex was assessed. Next neural population functions, or weighted representations of the neuronal activity, were used to replace the hindlimb movement as a trigger for reward in real-time (on-line decoding) in three conditions: while the animal could still press the pedal, after the pedal was removed and after a complete spinal transection. A novel representation of the motor program was learned when the animals used neural control to achieve water reward (e.g. more information was conveyed faster). After complete spinal transection, the ability of these neurons to convey information was reduced by more than 40%. However, this BMI representation was relearned over time despite a persistent reduction in the neuronal firing rate during the task. Therefore, neural control is a general feature of the motor cortex, not restricted to forelimb movements, and can be regained after spinal injury.


international conference of the ieee engineering in medicine and biology society | 2012

Control of a biomimetic brain machine interface with local field potentials: Performance and stability of a static decoder over 200 days

Robert D. Flint; Zachary A. Wright; Marc W. Slutzky

Brain-machine interfaces (BMIs) have the potential to restore lost function to individuals with severe motor impairments. An important design specification for BMIs to be clinically useful is the ability to achieve high performance over a period of months to years without requiring frequent recalibration. Here, we report the first successful implementation of a biomimetic BMI based on local field potentials (LFPs). A BMI decoder was built from a single recording session of a random-pursuit reaching task for each of two monkeys, and used to control cursor position in real time (online) over a span of 210 days. Performance using this BMI was similar to prior reports using BMIs based on single-unit spikes for 2D cursor control. During this ongoing study, target acquisition rates remained constant (in 1 monkey) or improved slightly (1 monkey) over a 7 month span, and performance metrics of cursor movement (path length and time-to-target) also remained constant or showed mild improvement as the monkeys gained practice. Based on these results, we expect that a stable, high-performance BMI based on LFP signals could serve as a viable alternative to single-unit based BMIs.


Frontiers in Systems Neuroscience | 2012

Encoding of temporal intervals in the rat hindlimb sensorimotor cortex.

Eric B. Knudsen; Robert D. Flint; Karen A. Moxon

The gradual buildup of neural activity over experimentally imposed delay periods, termed climbing activity, is well documented and is a potential mechanism by which interval time is encoded by distributed cortico-thalamico-striatal networks in the brain. Additionally, when multiple delay periods are incorporated, this activity has been shown to scale its rate of climbing proportional to the delay period. However, it remains unclear whether these patterns of activity occur within areas of motor cortex dedicated to hindlimb movement. Moreover, the effects of behavioral training (e.g., motor tasks) under different reward conditions but with similar behavioral output are not well addressed. To address this, we recorded activity from the hindlimb sensorimotor cortex (HLSMC) of two groups of rats performing a skilled hindlimb press task. In one group, rats were trained only to a make a valid press within a finite window after cue presentation for reward (non-interval trained, nIT; n = 5), while rats in the second group were given duration-specific cues in which they had to make presses of either short or long duration to receive reward (interval trained, IT; n = 6). Using perievent time histogram (PETH) analyses, we show that cells recorded from both groups showed climbing activity during the task in similar proportions (35% IT and 47% nIT), however, only climbing activity from IT rats was temporally scaled to press duration. Furthermore, using single trial decoding techniques (Wiener filter), we show that press duration can be inferred using climbing activity from IT animals (R = 0.61) significantly better than nIT animals (R = 0.507, p < 0.01), suggesting IT animals encode press duration through temporally scaled climbing activity. Thus, if temporal intervals are behaviorally relevant then the activity of climbing neurons is temporally scaled to encode the passage of time.


Journal of Neurophysiology | 2017

Physiological properties of brain-machine interface input signals

Marc W. Slutzky; Robert D. Flint

Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability.

Collaboration


Dive into the Robert D. Flint's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

An H. Do

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge