Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric C. Bruning is active.

Publication


Featured researches published by Eric C. Bruning.


Journal of the Atmospheric Sciences | 2010

Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics

Edward R. Mansell; Conrad L. Ziegler; Eric C. Bruning

Abstract Electrification and lightning are simulated for a small continental multicell storm. The results are consistent with observations and thus provide additional understanding of the charging processes and evolution of this storm. The first six observed lightning flashes were all negative cloud-to-ground (CG) flashes, after which intracloud (IC) flashes also occurred between middle and upper levels of the storm. The model simulation reproduces the basic evolution of lightning from low and middle levels to upper levels. The observed lightning indicated an initial charge structure of at least an inverted dipole (negative charge above positive). The simulations show that noninductive charge separation higher in the storm can enhance the main negative charge sufficiently to produce negative CG flashes before upper-level IC flashes commence. The result is a “bottom-heavy” tripole charge structure with midlevel negative charge and a lower positive charge region that is more significant than the upper posit...


Bulletin of the American Meteorological Society | 2008

TELEX The Thunderstorm Electrification and Lightning Experiment

Donald R. MacGorman; W. David Rust; Terry J. Schuur; Michael I. Biggerstaff; Jerry M. Straka; Conrad L. Ziegler; Edward R. Mansell; Eric C. Bruning; Kristin M. Kuhlman; Nicole R. Lund; Nicholas S. Biermann; Clark Payne; Lawrence D. Carey; Paul Krehbiel; W. Rison; Kenneth Bryan Eack; William H. Beasley

Measurements during TELEX by a lightning mapping array, polarimetric and mobile Doppler radars, and balloon-borne electric-field meters and radiosondes show how lightning and other electrical properties depend on storm structure, updrafts, and precipitation formation.


Monthly Weather Review | 2005

The Electrical Structure of Two Supercell Storms during STEPS

Donald R. MacGorman; W. David Rust; Paul Krehbiel; W. Rison; Eric C. Bruning; Kyle Wiens

Abstract Balloon soundings were made through two supercell storms during the Severe Thunderstorm Electrification and Precipitation Study (STEPS) in summer 2000. Instruments measured the vector electric field, temperature, pressure, relative humidity, and balloon location. For the first time, soundings penetrated both the strong updraft and the rainy downdraft region of the same supercell storm. In both storms, the strong updraft had fewer vertically separated charge regions than found near the rainy downdraft, and the updraft’s lowest charge was elevated higher, its bottom being near the 40-dBZ boundary of the weak-echo vault. The simpler, elevated charge structure is consistent with the noninductive graupel–ice mechanism dominating charge generation in updrafts. In the weak-echo vault, the amount of frozen precipitation and the time for particle interactions are too small for significant charging. Inductive charging mechanisms and lightning may contribute to the additional charge regions found at lower a...


Bulletin of the American Meteorological Society | 2015

The Deep Convective Clouds and Chemistry (DC3) Field Campaign

M. C. Barth; C. A. Cantrell; William H. Brune; Steven A. Rutledge; J. H. Crawford; Heidi Huntrieser; Lawrence D. Carey; Donald R. MacGorman; Morris L. Weisman; Kenneth E. Pickering; Eric C. Bruning; Bruce E. Anderson; Eric C. Apel; Michael I. Biggerstaff; Teresa L. Campos; Pedro Campuzano-Jost; R. C. Cohen; John D. Crounse; Douglas A. Day; Glenn S. Diskin; F. Flocke; Alan Fried; C. Garland; Brian G. Heikes; Shawn B. Honomichl; Rebecca S. Hornbrook; L. Gregory Huey; Jose L. Jimenez; Timothy J. Lang; Michael Lichtenstern

AbstractThe Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source character...


Monthly Weather Review | 2007

Electrical and Polarimetric Radar Observations of a Multicell Storm in TELEX

Eric C. Bruning; W. David Rust; Terry J. Schuur; Donald R. MacGorman; Paul Krehbiel; W. Rison

Abstract On 28–29 June 2004 a multicellular thunderstorm west of Oklahoma City, Oklahoma, was probed as part of the Thunderstorm Electrification and Lightning Experiment field program. This study makes use of radar observations from the Norman, Oklahoma, polarimetric Weather Surveillance Radar-1988 Doppler, three-dimensional lightning mapping data from the Oklahoma Lightning Mapping Array (LMA), and balloon-borne vector electric field meter (EFM) measurements. The storm had a low flash rate (30 flashes in 40 min). Four charge regions were inferred from a combination of LMA and EFM data. Lower positive charge near 4 km and midlevel negative charge from 4.5 to 6 km MSL (from 0° to −6.5°C) were generated in and adjacent to a vigorous updraft pulse. Further midlevel negative charge from 4.5 to 6 km MSL and upper positive charge from 6 to 8 km (from −6.5° to −19°C) were generated later in quantity sufficient to initiate lightning as the updraft decayed. A negative screening layer was present near the storm top...


Journal of the Atmospheric Sciences | 2013

Theory and Observations of Controls on Lightning Flash Size Spectra

Eric C. Bruning; Donald R. MacGorman

Previous analyses of very high frequency (VHF) Lightning Mapping Array (LMA) observations relative to the location of deep convective updrafts have noted a systematic pattern in flash characteristics. In and near strong updrafts, flashes tend to be smaller and more frequent, while flashes far from strong vertical drafts exhibit the opposite tendency. This study quantitatively tests these past anecdotal observations using LMA data for two supercell storms that occurred in Oklahoma in 2004. The data support a prediction from electrostatics that frequent breakdown and large flash extents are opposed. An energetic scaling that combines flash rate and flash area exhibits a 5/3 power-law scaling regime on scales of a few kilometers and a maximum inflashenergyatabout10km.Thespectralshapeis surprisinglyconsistentacrossarangeofmoderatetolarge flash rates. The shape of this lightning flash energy spectrum is similar to that expected of turbulent kinetic energy spectra in thunderstorms. In line with the hypothesized role of convective motions as the generator of thunderstorm electrical energy, the correspondence between kinematic and electrical energy spectra suggests that advection of charge-bearing precipitation by the storm’s flow, including in turbulent eddies, couples the electrical and kinematic properties of a thunderstorm.


Monthly Weather Review | 2011

Lightning Activity in a Hail-Producing Storm Observed with Phased-Array Radar

C. Emersic; P. L. Heinselman; Donald R. MacGorman; Eric C. Bruning

AbstractThis study examined lightning activity relative to the rapidly evolving kinematics of a hail-producing storm on 15 August 2006. Data were provided by the National Weather Radar Testbed Phased-Array Radar, the Oklahoma Lightning Mapping Array, and the National Lightning Detection Network.This analysis is the first to compare the electrical characteristics of a hail-producing storm with the reflectivity and radial velocity structure at temporal resolutions of less than 1 min. Total flash rates increased to approximately 220 min−1 as the storm’s updraft first intensified, leveled off during its first mature stage, and then decreased for 2–3 min despite the simultaneous development of another updraft surge. This reduction in flash rate occurred as wet hail formed in the new updraft and was likely related to the wet growth; wet growth is not conducive to hydrometeor charging and probably contributed to the formation of a “lightning hole” without a mesocyclone. Total flash rates subsequently increased t...


Monthly Weather Review | 2010

Formation of Charge Structures in a Supercell

Eric C. Bruning; W. David Rust; Donald R. MacGorman; Michael I. Biggerstaff; Terry J. Schuur

Abstract Lightning mapping, electric field, and radar data from the 26 May 2004 supercell in central Oklahoma are used to examine the storm’s charge structure. An initial arc-shaped maximum in lightning activity on the right flank of the storm’s bounded weak echo region was composed of an elevated normal polarity tripole in the region of precipitation lofted above the storm’s weak echo region. Later in the storm, two charge structures were associated with precipitation that reached the ground. To the left of the weak echo region, six charge regions were inferred, with positive charge carried on hail at the bottom of the stack. Farther forward in the storm’s precipitation region, four charge regions were inferred, with negative charge at the bottom of the stack. There were different charge structures in adjacent regions of the storm at the same time, and regions of opposite polarity charge were horizontally adjacent at the same altitude. Flashes occasionally lowered positive charge to ground from the forwa...


Monthly Weather Review | 2008

Evolving Complex Electrical Structures of the STEPS 25 June 2000 Multicell Storm

Stephanie A. Weiss; W. David Rust; Donald R. MacGorman; Eric C. Bruning; Paul Krehbiel

Abstract Data from a three-dimensional lightning mapping array (LMA) and from two soundings by balloon-borne electric field meters (EFMs) were used to analyze the electrical structures of a multicell storm observed on 25 June 2000 during the Severe Thunderstorm Electrification and Precipitation Study (STEPS). This storm had a complex, multicell structure with four sections, each of whose electrical structure differed from that of the others during all or part of the analyzed period. The number of vertically stacked charge regions in any given section of the storm ranged from two to six. The most complex charge and lightning structures occurred in regions with the highest reflectivity values and the deepest reflectivity cores. Intracloud flashes tended to concentrate in areas with large radar reflectivity values, though some propagated across more than one core of high reflectivity or into the low-reflectivity anvil. Intracloud lightning flash rates decreased as the vertical extent and maximum value of ref...


Journal of Geophysical Research | 2015

Environmental controls on storm intensity and charge structure in multiple regions of the continental United States

Brody R. Fuchs; Steven A. Rutledge; Eric C. Bruning; Jeffrey R. Pierce; John K. Kodros; Timothy J. Lang; Donald R. MacGorman; Paul Krehbiel; W. Rison

A database consisting of approximately 4000 storm observations has been objectively analyzed to determine environmental characteristics that produce high radar reflectivities above the freezing level, large total lightning flash rates on the order of 10 flashes per minute, and anomalous vertical charge structures (most notably, dominant midlevel positive charge). The storm database is drawn from four regions of the United States featuring distinct environments, each with coinciding Lightning Mapping Array (LMA) network data. LMAs are able to infer total lightning flash rates using flash clustering algorithms, such as the one implemented in this study. Results show that anomalous charge structures inferred from LMA data, significant lightning flash rates, and increased radar reflectivities above the freezing level tend to be associated with environments that have high cloud base heights (approximately 3 km above ground level) and large atmospheric instability, quantified by normalized convective available potential energy (NCAPE) near 0.2 m s−2. Additionally, we infer that aerosols may affect storm intensity. Maximum flash rates were observed in storms with attributed aerosol concentrations near 1000 cm−3, while total flash rates decrease when aerosol concentrations exceed 1500 cm−3, consistent with previous studies. However, this effect is more pronounced in regions where the NCAPE and cloud base height are low. The dearth of storms with estimated aerosol concentrations less than 700 cm−3 (approximately 1% of total sample) does not provide a complete depiction of aerosol invigoration.

Collaboration


Dive into the Eric C. Bruning's collaboration.

Top Co-Authors

Avatar

Donald R. MacGorman

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Paul Krehbiel

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

W. Rison

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence D. Carey

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. David Rust

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

I. B. Pollack

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

M. C. Barth

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge