Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. B. Pollack is active.

Publication


Featured researches published by I. B. Pollack.


Atmospheric Chemistry and Physics | 2016

Why do models overestimate surface ozone in the Southeast United States

Katherine R. Travis; Daniel J. Jacob; Jenny A. Fisher; Patrick S. Kim; Eloise A. Marais; Lei Zhu; Karen Yu; Christopher Miller; Robert M. Yantosca; Melissa P. Sulprizio; Anne M. Thompson; Paul O. Wennberg; John D. Crounse; Jason M. St. Clair; R. C. Cohen; Joshua L. Laughner; Jack E. Dibb; Samuel R. Hall; Kirk Ullmann; G. M. Wolfe; I. B. Pollack; J. Peischl; J. A. Neuman; X. Zhou

Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.


Journal of Geophysical Research | 2016

Modeling the weekly cycle of NOx and CO emissions and their impacts on O3 in the Los Angeles‐South Coast Air Basin during the CalNex 2010 field campaign

S.-W. Kim; Brian C. McDonald; Sunil Baidar; Steven S. Brown; B. Dube; Richard A. Ferrare; G. J. Frost; Robert A. Harley; John S. Holloway; H.‐J. Lee; S. A. McKeen; J. A. Neuman; J. B. Nowak; H. Oetjen; Ivan Ortega; I. B. Pollack; James M. Roberts; T. B. Ryerson; Amy Jo Scarino; Christoph J. Senff; Ryan Thalman; M. Trainer; R. Volkamer; Nicholas L. Wagner; Rebecca A. Washenfelder; Eleanor M. Waxman; Cora J. Young

We developed a new nitrogen oxide (NOx) and carbon monoxide (CO) emission inventory for the Los Angeles-South Coast Air Basin (SoCAB) expanding the Fuel-based Inventory for motor-Vehicle Emissions and applied it in regional chemical transport modeling focused on the California Nexus of Air Quality and Climate Change (CalNex) 2010 field campaign. The weekday NOx emission over the SoCAB in 2010 is 620 t d−1, while the weekend emission is 410 t d−1. The NOx emission decrease on weekends is caused by reduced diesel truck activities. Weekday and weekend CO emissions over this region are similar: 2340 and 2180 t d−1, respectively. Previous studies reported large discrepancies between the airborne observations of NOx and CO mixing ratios and the model simulations for CalNex based on the available bottom-up emission inventories. Utilizing the newly developed emission inventory in this study, the simulated NOx and CO mixing ratios agree with the observations from the airborne and the ground-based in situ and remote sensing instruments during the field study. The simulations also reproduce the weekly cycles of these chemical species. Both the observations and the model simulations indicate that decreased NOx on weekends leads to enhanced photochemistry and increase of O3 and Ox (=O3 + NO2) in the basin. The emission inventory developed in this study can be extended to different years and other urban regions in the U.S. to study the long-term trends in O3 and its precursors with regional chemical transport models.


Journal of Geophysical Research | 2016

Airborne quantification of upper tropospheric NOx production from lightning in deep convective storms over the United States Great Plains

I. B. Pollack; Cameron R. Homeyer; T. B. Ryerson; K. C. Aikin; J. Peischl; Eric C. Apel; Teresa L. Campos; F. Flocke; Rebecca S. Hornbrook; D. J. Knapp; D. D. Montzka; Andrew J. Weinheimer; Daniel D. Riemer; G. Diskin; G. W. Sachse; Tomas Mikoviny; Armin Wisthaler; Eric C. Bruning; Donald R. MacGorman; Kristin A. Cummings; Kenneth E. Pickering; Heidi Huntrieser; Michael Lichtenstern; Hans Schlager; M. C. Barth

The reported range for global production of nitrogen oxides (NOx = NO + NO2) by lightning remains large (e.g., 32 to 664 mol NOx flash−1), despite incorporating results from over 30 individual laboratory, theoretical, and field studies since the 1970s. Airborne and ground-based observations from the Deep Convective Clouds and Chemistry experiment in May and June 2012 provide a new data set for calculating moles of NOx produced per lightning flash, P(NOx), in thunderstorms over the United States Great Plains. This analysis utilizes a combination of in situ observations of storm inflow and outflow from three instrumented aircraft, three-dimensional spatial information from ground-based radars and satellite observations, and spatial and temporal information for intracloud and cloud-to-ground lightning flashes from ground-based lightning mapping arrays. Evaluation of two analysis methods (e.g., a volume-based approach and a flux-based approach) for converting enhancements in lightning-produced NOx from volume-based mixing ratios to moles NOx flash−1 suggests that both methods equally approximate P(NOx) for storms with elongated anvils, while the volume-based approach better approximates P(NOx) for storms with circular-shaped anvils. Results from the more robust volume-based approach for three storms sampled over Oklahoma and Colorado during DC3 suggest a range of 142 to 291 (average of 194) moles NOx flash−1 (or 117–332 mol NOx flash−1 including uncertainties). Although not vastly different from the previously reported range for storms occurring in the Great Plains (e.g., 21–465 mol NOx flash−1), results from this analysis of DC3 storms offer more constrained upper and lower limits for P(NOx) in this geographical region.


Journal of Geophysical Research | 2016

Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3

M. C. Barth; Megan M. Bela; Alan Fried; Paul O. Wennberg; John D. Crounse; J. M. St. Clair; Nicola J. Blake; D. R. Blake; Cameron R. Homeyer; William H. Brune; L. Zhang; Jingqiu Mao; Xinrong Ren; T. B. Ryerson; I. B. Pollack; J. Peischl; R. C. Cohen; Benjamin A. Nault; L. G. Huey; Xiaoxi Liu; C. A. Cantrell

One of the objectives of the Deep Convective Clouds and Chemistry (DC3) field experiment was to determine the scavenging of soluble trace gases by thunderstorms. We present an analysis of scavenging of hydrogen peroxide (H_2O_2) and methyl hydrogen peroxide (CH_3OOH) from six DC3 cases that occurred in Oklahoma and northeast Colorado. Estimates of H_2O_2 scavenging efficiencies are comparable to previous studies ranging from 79 to 97% with relative uncertainties of 5–25%. CH_3OOH scavenging efficiencies ranged from 12 to 84% with relative uncertainties of 18–558%. The wide range of CH_3OOH scavenging efficiencies is surprising, as previous studies suggested that CH_3OOH scavenging efficiencies would be <10%. Cloud chemistry model simulations of one DC3 storm produced CH_3OOH scavenging efficiencies of 26–61% depending on the ice retention factor of CH_3OOH during cloud drop freezing, suggesting ice physics impacts CH_3OOH scavenging. The highest CH_3OOH scavenging efficiencies occurred in two severe thunderstorms, but there is no obvious correlation between the CH_3OOH scavenging efficiency and the storm thermodynamic environment. We found a moderate correlation between the estimated entrainment rates and CH_3OOH scavenging efficiencies. Changes in gas-phase chemistry due to lightning production of nitric oxide and aqueous-phase chemistry have little effect on CH_3OOH scavenging efficiencies. To determine why CH_3OOH can be substantially removed from storms, future studies should examine effects of entrainment rate, retention of CH_3OOH in frozen cloud particles during drop freezing, and lightning-NO_x production.


Journal of Geophysical Research | 2016

Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study

Alan Fried; M. C. Barth; Megan M. Bela; Petter Weibring; Dirk Richter; James G. Walega; Yunyao Li; Kenneth E. Pickering; Eric C. Apel; Rebecca S. Hornbrook; Alan J. Hills; Daniel D. Riemer; Nicola J. Blake; D. R. Blake; Jason R. Schroeder; Zhengzhao Johnny Luo; J. H. Crawford; J. R. Olson; S. Rutledge; Daniel P. Betten; M. I. Biggerstaff; Glenn S. Diskin; G. W. Sachse; Teresa L. Campos; F. Flocke; Andrew J. Weinheimer; C. A. Cantrell; I. B. Pollack; J. Peischl; Karl D. Froyd

We have developed semi-independent methods for determining CH2O scavenging efficiencies (SEs) during strong midlatitude convection over the western, south-central Great Plains, and southeastern regions of the United States during the 2012 Deep Convective Clouds and Chemistry (DC3) Study. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) was employed to simulate one DC3 case to provide an independent approach of estimating SEs and the opportunity to study CH2O retention in ice when liquid drops freeze. Measurements of CH2O in storm inflow and outflow were acquired on board the NASA DC-8 and the NSF/National Center for Atmospheric Research Gulfstream V (GV) aircraft employing cross-calibrated infrared absorption spectrometers. This study also relied heavily on the nonreactive tracers i-/n-butane and i-/n-pentane measured on both aircraft in determining lateral entrainment rates during convection as well as their ratios to ensure that inflow and outflow air masses did not have different origins. Of the five storm cases studied, the various tracer measurements showed that the inflow and outflow from four storms were coherently related. The combined average of the various approaches from these storms yield remarkably consistent CH2O scavenging efficiency percentages of: 54% ± 3% for 29 May; 54% ± 6% for 6 June; 58% ± 13% for 11 June; and 41 ± 4% for 22 June. The WRF-Chem SE result of 53% for 29 May was achieved only when assuming complete CH2O degassing from ice. Further analysis indicated that proper selection of corresponding inflow and outflow time segments is more important than the particular mixing model employed.


Journal of Geophysical Research | 2016

Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

Heidi Huntrieser; Michael Lichtenstern; Monika Scheibe; H. Aufmhoff; Hans Schlager; Tomáš Púčik; Andreas Minikin; Bernadett Weinzierl; K. Heimerl; I. B. Pollack; J. Peischl; T. B. Ryerson; Andrew J. Weinheimer; Shawn B. Honomichl; B. A. Ridley; M. I. Biggerstaff; Daniel P. Betten; J. W. Hair; Carolyn Butler; Michael J. Schwartz; M. C. Barth

During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum fur Luft- und Raumfahrt (DLR)-Falcon in situ measurements (CO, O3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements.


Journal of Geophysical Research | 2017

Source characterization of volatile organic compounds in the Colorado Northern Front Range Metropolitan Area during spring and summer 2015

Andrew Abeleira; I. B. Pollack; Barkley Cushing Sive; Yong Zhou; Emily V. Fischer; Delphine K. Farmer

Hourly measurements of 46 volatile organic compounds (VOCs) from the Boulder Atmospheric Observatory in Erie, CO, were collected over 16 weeks in spring and summer 2015. Average VOC reactivity (1.2 s−1 in spring and 2.4 s−1 in summer) was lower than most other U.S. urban sites. Positive matrix factorization analysis identified five VOC factors in the spring, corresponding to sources from (1) long-lived oil and natural gas (ONG-long lived), (2) short-lived oil and natural gas (ONG-short lived), (3) traffic, (4) background, and (5) secondary chemical production. In the summer, an additional biogenic factor was dominated by isoprene. While ONG-related VOCs were the single largest contributor (40–60%) to the calculated VOC reactivity with hydroxyl radicals (OH) throughout the morning in both spring and summer, the biogenic factor substantially enhanced afternoon and evening (2–10 P.M. local time) VOC reactivity (average of 21%; maxima of 49% of VOC reactivity) during summertime. These results contrast with a previous summer 2012 campaign which showed that biogenics contributed only 8% of VOC reactivity on average. The interannual differences suggest that the role of biogenic VOCs in the Colorado Northern Front Range Metropolitan Area (NFRMA) varies with environmental conditions such as drought stress. Overall, the NFRMA was more strongly influenced by ONG sources of VOCs than other urban and suburban regions in the U.S.


Geophysical Research Letters | 2017

Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry

Benjamin A. Nault; Joshua L. Laughner; P. J. Wooldridge; John D. Crounse; Jack E. Dibb; Glenn S. Diskin; J. Peischl; J. R. Podolske; I. B. Pollack; T. B. Ryerson; Eric Scheuer; Paul O. Wennberg; R. C. Cohen

Lightning is one of the most important sources of upper tropospheric NO_x; however, there is a large spread in estimates of the global emission rates (2–8 Tg N yr^(−1)). We combine upper tropospheric in situ observations from the Deep Convective Clouds and Chemistry (DC3) experiment and global satellite-retrieved NO_2 tropospheric column densities to constrain mean lightning NO_x (LNO_x) emissions per flash. Insights from DC3 indicate that the NO_x lifetime is ~3 h in the region of outflow of thunderstorms, mainly due to production of methyl peroxy nitrate and alkyl and multifunctional nitrates. The lifetime then increases farther downwind from the region of outflow. Reinterpreting previous analyses using the 3 h lifetime reduces the spread among various methods that have been used to calculate mean LNO_x emissions per flash and indicates a global LNO_x emission rate of ~9 Tg N yr^(−1), a flux larger than the high end of recent estimates.


Geophysical Research Letters | 2018

Observed NO/NO2 Ratios in the Upper Troposphere Imply Errors in NO-NO2-O3 Cycling Kinetics or an Unaccounted NOx Reservoir

R. F. Silvern; Daniel J. Jacob; K. R. Travis; Tomás Sherwen; M. J. Evans; R. C. Cohen; Joshua L. Laughner; Samuel R. Hall; Kirk Ullmann; John D. Crounse; Paul O. Wennberg; J. Peischl; I. B. Pollack

Observations from the SEAC^4RS aircraft campaign over the southeast United States in August–September 2013 show NO/NO_2 concentration ratios in the upper troposphere that are approximately half of photochemical equilibrium values computed from Jet Propulsion Laboratory (JPL) kinetic data. One possible explanation is the presence of labile NO_x reservoir species, presumably organic, decomposing thermally to NO_2 in the instrument. The NO_2 instrument corrects for this artifact from known labile HNO_4 and CH_3O_2NO_2 NO_x reservoirs. To bridge the gap between measured and simulated NO_2, additional unaccounted labile NO_x reservoir species would have to be present at a mean concentration of ~40 ppt for the SEAC^4RS conditions (compared with 197 ppt for NOx). An alternative explanation is error in the low‐temperature rate constant for the NO + O_3 reaction (30% 1‐σ uncertainty in JPL at 240 K) and/or in the spectroscopic data for NO_2 photolysis (20% 1‐σ uncertainty). Resolving this discrepancy is important for understanding global budgets of tropospheric oxidants and for interpreting satellite observations of tropospheric NO_2 columns.


Atmospheric Chemistry and Physics | 2015

A large and ubiquitous source of atmospheric formic acid

Dylan B. Millet; Munkhbayar Baasandorj; Delphine K. Farmer; Joel A. Thornton; K. Baumann; Patrick Brophy; S. Chaliyakunnel; J. A. de Gouw; Martin Graus; Lu Hu; Abigail Koss; B. H. Lee; Felipe D. Lopez-Hilfiker; J. A. Neuman; Fabien Paulot; J. Peischl; I. B. Pollack; T. B. Ryerson; Carsten Warneke; Brent J. Williams; Jun-Wei Xu

Collaboration


Dive into the I. B. Pollack's collaboration.

Top Co-Authors

Avatar

J. Peischl

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

T. B. Ryerson

Earth System Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. A. Neuman

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

M. C. Barth

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Weinheimer

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

John D. Crounse

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Megan M. Bela

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Paul O. Wennberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. C. Cohen

University of California

View shared research outputs
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge