Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric C. Cheon is active.

Publication


Featured researches published by Eric C. Cheon.


Cancer and Metastasis Reviews | 2011

The significant role of mast cells in cancer

Khashayarsha Khazaie; Nichole R. Blatner; Mohammad W. Khan; Fotini Gounari; Elias Gounaris; Kristen L. Dennis; Andreas Bonertz; Fu Nien Tsai; Matthew J. Strouch; Eric C. Cheon; Joseph D. Phillips; David J. Bentrem

Mast cells (MC) are a bone marrow-derived, long-lived, heterogeneous cellular population that function both as positive and negative regulators of immune responses. They are arguably the most productive chemical factory in the body and influence other cells through both soluble mediators and cell-to-cell interaction. MC are commonly seen in various tumors and have been attributed alternatively with tumor rejection or tumor promotion. Tumor-infiltrating MC are derived both from sentinel and recruited progenitor cells. MC can directly influence tumor cell proliferation and invasion but also help tumors indirectly by organizing its microenvironment and modulating immune responses to tumor cells. Best known for orchestrating inflammation and angiogenesis, the role of MC in shaping adaptive immune responses has become a focus of recent investigations. MC mobilize T cells and antigen-presenting dendritic cells. They function as intermediaries in regulatory T cells (Treg)-induced tolerance but can also modify or reverse Treg-suppressive properties. The central role of MC in the control of innate and adaptive immunity endows them with the ability to tune the nature of host responses to cancer and ultimately influence the outcome of disease and fate of the cancer patient.


Clinical Cancer Research | 2010

Crosstalk between Mast Cells and Pancreatic Cancer Cells Contributes to Pancreatic Tumor Progression

Matthew J. Strouch; Eric C. Cheon; Mohammad R. Salabat; Seth B. Krantz; Elias Gounaris; Laleh G. Melstrom; Surabhi Dangi-Garimella; Hidayatullah G. Munshi; Khashayarsha Khazaie; David J. Bentrem

Purpose: To assess the clinical and pathologic significance of mast cell infiltration in human pancreatic cancer and evaluate crosstalk between mast cells and cancer cells in vitro. Experimental Design: Immunohistochemistry for tryptase was done on 53 pancreatic cancer specimens. Mast cell counts were correlated with clinical variables and survival. Serum tryptase activity from patients with cancer was compared with patients with benign pancreatic disease. In vitro, the effect of pancreatic cancer–conditioned medium on mast cell migration was assessed. The effect of conditioned medium from the human mast cell line, LAD-2, on cancer and normal ductal cell proliferation was assessed by thymidine incorporation. Matrigel invasion assays were used to evaluate the effect of mast cell–conditioned medium on cancer cell invasion in the presence and absence of a matrix metalloproteinase inhibitor, GM6001. Results: Mast cell infiltration was significantly increased in pancreatic cancer compared with normal pancreatic tissue (11.4 ± 6.7 versus 2.0 ± 1.4, P < 0.001). Increased infiltrating mast cells correlated with higher grade tumors (P < 0.0001) and worse survival. Patients with pancreatic cancer had elevated serum tryptase activity (P < 0.05). In vitro, AsPC1 and PANC-1 cells induced mast cell migration. Mast cell–conditioned medium induced pancreatic cancer cell migration, proliferation, and invasion but had no effect on normal ductal cells. Furthermore, the effect of mast cells on cancer cell invasion was, in large part, matrix metalloproteinase–dependent. Conclusions: Tumor-infiltrating mast cells are associated with worse prognosis in pancreatic cancer. In vitro, the interaction between mast cells and pancreatic cancer cells promotes tumor growth and invasion. Clin Cancer Res; 16(8); 2257–65. ©2010 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2010

In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction.

Nichole R. Blatner; Andreas Bonertz; Eric C. Cheon; Seth B. Krantz; Matthew J. Strouch; Juergen Weitz; Moritz Koch; Amy L. Halverson; David J. Bentrem; Khashayarsha Khazaie

T-regulatory cells (Treg) and mast cells (MC) are abundant in colorectal cancer (CRC) tumors. Interaction between the two is known to promote immune suppression or loss of Treg functions and autoimmunity. Here, we demonstrate that in both human CRC and murine polyposis the outcome of this interaction is the generation of potently immune suppressive but proinflammatory Treg (ΔTreg). These Treg shut down IL10, gain potential to express IL17, and switch from suppressing to promoting MC expansion and degranulation. This change is also brought about by direct coculture of MC and Treg, or culture of Treg in medium containing IL6 and IL2. IL6 deficiency in the bone marrow of mice susceptible to polyposis eliminated IL17 production by the polyp infiltrating Treg, but did not significantly affect the growth of polyps or the generation of proinflammatory Treg. IL6-deficient MC could generate proinflammatory Treg. Thus, MC induce Treg to switch function and escalate inflammation in CRC without losing T-cell–suppressive properties. IL6 and IL17 are not needed in this process.


Cancer Research | 2011

Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APC Δ468 mice

Eric C. Cheon; Khashayarsha Khazaie; Mohammad W. Khan; Matthew J. Strouch; Seth B. Krantz; Joseph D. Phillips; Nichole R. Blatner; Laura M. Hix; Ming Zhang; Kristen L. Dennis; Mohammed R. Salabat; Michael J. Heiferman; Paul J. Grippo; Hidayatullah G. Munshi; Elias Gounaris; David J. Bentrem

Arachidonic acid metabolism has been implicated in colon carcinogenesis, but the role of hematopoietic 5-lipoxygenase (5LO) that may impact tumor immunity in development of colon cancer has not been explored. Here we show that tissue-specific deletion of the 5LO gene in hematopoietic cells profoundly attenuates polyp development in the APC(Δ468) murine model of colon polyposis. In vitro analyses indicated that mast cells in particular utilized 5LO to limit proliferation of intestinal epithelial cells and to mobilize myeloid-derived suppressor cells (MDSCs). Mice lacking hemapoietic expression of 5LO exhibited reduced recruitment of MDSCs to the spleen, mesenteric lymph nodes, and primary tumor site. 5LO deficiency also reduced the activity in MDSCs of arginase-1, which is thought to be critical for MDSC function. Together, our results establish a pro-tumorigenic role of hematopoietic 5LO in the immune microenvironment and suggest 5LO inhibition as an avenue for future investigation in treatment of colorectal polyposis and cancer.


Molecular Cancer Research | 2011

MT1-MMP cooperates with Kras(G12D) to promote pancreatic fibrosis through increased TGF-β signaling.

Seth B. Krantz; Mario A. Shields; Surabhi Dangi-Garimella; Eric C. Cheon; Morgan R. Barron; Rosa F. Hwang; M. Sambasiva Rao; Paul J. Grippo; David J. Bentrem; Hidayatullah G. Munshi

Pancreatic cancer is associated with a pronounced fibrotic reaction that was recently shown to limit delivery of chemotherapy. To identify potential therapeutic targets to overcome this fibrosis, we examined the interplay between fibrosis and the key proteinase membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14), which is required for growth and invasion in the collagen-rich microenvironment. In this article, we show that compared with control mice (Kras+/MT1-MMP−) that express an activating KrasG12D mutation necessary for pancreatic cancer development, littermate mice that express both MT1-MMP and KrasG12D (Kras+/MT1-MMP+) developed a greater number of large, dysplastic mucin-containing papillary lesions. These lesions were associated with a significant amount of surrounding fibrosis, increased α-smooth muscle actin (+) cells in the stroma, indicative of activated myofibroblasts, and increased Smad2 phosphorylation. To further understand how MT1-MMP promotes fibrosis, we established an in vitro model to examine the effect of expressing MT1-MMP in pancreatic ductal adenocarcinoma (PDAC) cells on stellate cell collagen deposition. Conditioned media from MT1-MMP–expressing PDAC cells grown in three-dimensional collagen enhanced Smad2 nuclear translocation, promoted Smad2 phosphorylation, and increased collagen production by stellate cells. Inhibiting the activity or expression of the TGF-β type I receptor in stellate cells attenuated MT1-MMP conditioned medium–induced collagen expression by stellate cells. In addition, a function-blocking anti–TGF-β antibody also inhibited MT1-MMP conditioned medium–induced collagen expression in stellate cells. Overall, we show that the bona fide collagenase MT1-MMP paradoxically contributes to fibrosis by increasing TGF-β signaling and that targeting MT1-MMP may thus help to mitigate fibrosis. Mol Cancer Res; 9(10); 1294–304. ©2011 AACR.


Clinical Cancer Research | 2013

PI3K/AKT Signaling Is Essential for Communication between Tissue-Infiltrating Mast Cells, Macrophages, and Epithelial Cells in Colitis-Induced Cancer

Mohammad W. Khan; Ali Keshavarzian; Elias Gounaris; Joshua E. Melson; Eric C. Cheon; Nichole R. Blatner; Zongmin Eric Chen; Fu-Nien Tsai; Goo Lee; Hyunji Ryu; Terrence A. Barrett; David J. Bentrem; Khashayarsha Khazaie

Purpose: To understand signaling pathways that shape inflamed tissue and predispose to cancer is critical for effective prevention and therapy for chronic inflammatory diseases. We have explored phosphoinositide 3-kinase (PI3K) activity in human inflammatory bowel diseases and mouse colitis models. Experimental Design: We conducted immunostaining of phosphorylated AKT (pAKT) and unbiased high-throughput image acquisition and quantitative analysis of samples of noninflamed normal colon, colitis, dysplasia, and colorectal cancer. Mechanistic insights were gained from ex vivo studies of cell interactions, the piroxicam/IL-10−/− mouse model of progressive colitis, and use of the PI3K inhibitor LY294002. Results: Progressive increase in densities of pAKT-positive tumor-associated macrophages (TAM) and increase in densities of mast cells in the colonic submucosa were noted with colitis and progression to dysplasia and cancer. Mast cells recruited macrophages in ex vivo migration assays, and both mast cells and TAMs promoted invasion of cancer cells. Pretreatment of mast cells with LY294002 blocked recruitment of TAMs. LY294002 inhibited mast cell and TAM-mediated tumor invasion, and in mice, blocked stromal PI3K, colitis, and cancer. Conclusion: The PI3K/AKT pathway is active in cells infiltrating inflamed human colon tissue. This pathway sustains the recruitment of inflammatory cells through a positive feedback loop. The PI3K/AKT pathway is essential for tumor invasion and the malignant features of the piroxicam/IL-10−/− mouse model. LY294002 targets the PI3K pathway and hinders progressive colitis. These findings indicate that colitis and progression to cancer are dependent on stromal PI3K and sensitive to treatment with LY294002. Clin Cancer Res; 19(9); 2342–54. ©2013 AACR.


PLOS ONE | 2015

Zileuton, 5-lipoxygenase inhibitor, acts as a chemopreventive agent in intestinal polyposis, by modulating polyp and systemic inflammation.

Elias Gounaris; Michael J. Heiferman; J.R. Heiferman; Manisha Shrivastav; Dominic Vitello; Nichole R. Blatner; Lawrence M. Knab; Joseph D. Phillips; Eric C. Cheon; Paul J. Grippo; Khashayarsha Khazaie; Hidayatullah G. Munshi; David J. Bentrem

Purpose Leukotrienes and prostaglandins, products of arachidonic acid metabolism, sustain both systemic and lesion-localized inflammation. Tumor-associated Inflammation can also contribute to the pathogenesis of colon cancer. Patients with inflammatory bowel disease (IBD) have increased risk of developing colon cancer. The levels of 5-lipoxygenase (5-LO), the key enzyme for leukotrienes production, are increased in colon cancer specimens and colonic dysplastic lesions. Here we report that Zileuton, a specific 5-LO inhibitor, can prevent polyp formation by efficiently reducing the tumor-associated and systemic inflammation in APCΔ468 mice. Experimental Design In the current study, we inhibited 5-LO by dietary administration of Zileuton in the APCΔ468 mouse model of polyposis and analyzed the effect of in vivo 5-LO inhibition on tumor-associated and systemic inflammation. Results Zileuton-fed mice developed fewer polyps and displayed marked reduction in systemic and polyp-associated inflammation. Pro-inflammatory cytokines and pro-inflammatory innate and adaptive immunity cells were reduced both in the lesions and systemically. As part of tumor-associated inflammation Leukotriene B4 (LTB4), product of 5-LO activity, is increased focally in human dysplastic lesions. The 5-LO enzymatic activity was reduced in the serum of Zileuton treated polyposis mice. Conclusions This study demonstrates that dietary administration of 5-LO specific inhibitor in the polyposis mouse model decreases polyp burden, and suggests that Zileuton may be a potential chemo-preventive agent in patients that are high-risk of developing colon cancer.


Cancer Research | 2009

Tgfbr1 Haploinsufficiency Inhibits the Development of Murine Mutant Kras-Induced Pancreatic Precancer

Kevin Adrian; Matthew J. Strouch; Qinghua Zeng; Morgan R. Barron; Eric C. Cheon; Akilesh Honasoge; Yanfei Xu; Sharbani Phukan; Maureen Sadim; David J. Bentrem; Boris Pasche; Paul J. Grippo

To dissect the role of constitutively altered Tgfbr1 signaling in pancreatic cancer development, we crossed Elastase-Kras(G12D) (EL-Kras) mice with Tgfbr1 haploinsufficient mice to generate EL-Kras/Tgfbr1(+/-) mice. Mice were euthanized at 6 to 9 months to compare the incidence, frequency, and size of precancerous lesions in the pancreas. Only 50% of all EL-Kras/Tgfbr1(+/-) mice developed preinvasive lesions compared with 100% of EL-Kras (wild-type Tgfbr1) mice. The frequency of precancerous lesions was 4-fold lower in haploinsufficient than in control mice. Paradoxically, the precancerous lesions of EL-Kras/Tgfbr1(+/-) mice were considerably larger than those in EL-Kras mice. Yet, the mitotic index of precancerous cells and the observable levels of fibrosis, lipoatrophy, and lymphocytic infiltration were reduced in EL-Kras/Tgfbr1(+/-) mice. We conclude that Tgfbr1 signaling promotes the development of precancerous lesions in mice. These findings suggest that individuals with constitutively decreased TGFBR1 expression may have a decreased risk of pancreatic cancer.


International Journal of Cancer | 2011

Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice†

Eric C. Cheon; Matthew J. Strouch; Morgan R. Barron; Yongzeng Ding; Laleh G. Melstrom; Seth B. Krantz; Bhargava Mullapudi; Kevin Adrian; Sambasiva Rao; Thomas E. Adrian; David J. Bentrem; Paul J. Grippo

Diets containing omega‐6 (ω‐6) fat have been associated with increased tumor development in carcinogen‐induced pancreatic cancer models. However, the effects of ω‐6 fatty acids and background strain on the development of genetically‐induced pancreatic neoplasia is unknown. We assessed the effects of a diet rich in ω‐6 fat on the development of pancreatic neoplasia in elastase (EL)‐KrasG12D (EL‐Kras) mice in two different backgrounds. EL‐Kras FVB mice were crossed to C57BL/6 (B6) mice to produce EL‐Kras FVB6 F1 (or EL‐Kras F1) and EL‐Kras B6 congenic mice. Age‐matched EL‐Kras mice from each strain were compared to one another on a standard chow. Two cohorts of EL‐Kras FVB and EL‐Kras F1 mice were fed a 23% corn oil diet and compared to age‐matched mice fed a standard chow. Pancreata were scored for incidence, frequency, and size of neoplastic lesions, and stained for the presence of mast cells to evaluate changes in the inflammatory milieu secondary to a high fat diet. EL‐Kras F1 mice had increased incidence, frequency, and size of pancreatic neoplasia compared to EL‐Kras FVB mice. The frequency and size of neoplastic lesions and the weight and pancreatic mast cell densities in EL‐Kras F1 mice were increased in mice fed a high ω‐6 fatty acid diet compared to mice fed a standard chow. We herein introduce the EL‐Kras B6 mouse model which presents with increased frequency of pancreatic neoplasia compared to EL‐Kras F1 mice. The phenotype in EL‐Kras F1 and FVB mice is promoted by a diet rich in ω‐6 fatty acid.


Journal of Vascular and Interventional Radiology | 2009

Development of a VX2 Pancreatic Cancer Model in Rabbits: A Pilot Study

A.C. Eifler; Robert J. Lewandowski; Sumeet Virmani; J. Chung; Dingxin Wang; Richard Tang; Barbara Szolc-Kowalska; Gayle E. Woloschak; Guang Yu Yang; Robert K. Ryu; Riad Salem; Andrew C. Larson; Eric C. Cheon; Matthew J. Strouch; David J. Bentrem; Reed A. Omary

PURPOSE An animal model of pancreatic cancer that is large enough to permit imaging and catheterization would be desirable for interventional radiologists to develop novel therapies for pancreatic cancer. The purpose of this study was to test the hypothesis that the VX2 rabbit model of pancreatic cancer could be developed as a suitable platform to test future interventional therapies. MATERIALS AND METHODS The authors implanted and grew three pancreatic VX2 tumors per rabbit in six rabbits. Magnetic resonance (MR) imaging was performed at 2 weeks to confirm tumor growth. At 3 weeks, the authors selectively catheterized the gastroduodenal artery under guidance of x-ray digital subtraction angiography (DSA). T2-weighted anatomic imaging, diffusion-weighted MR imaging, and transcatheter intraarterial perfusion (TRIP) MR imaging were then performed. After imaging, tumors were confirmed at necropsy and histopathologically. Tumor sizes at 2 and 3 weeks were compared with a paired t test (P = .05). RESULTS VX2 pancreatic tumors were grown in all six rabbits. The difference between tumor sizes at 2 and 3 weeks (1.29 cm +/- 0.39 vs 1.91 cm +/- 0.50, respectively) was significant (P < .001). All tumors were confirmed to be located within pancreatic tissue via histopathologic analysis. DSA and TRIP MR imaging were successful in five rabbits. Diffusion-weighted and anatomic MR imaging were successful in all six rabbits. CONCLUSIONS The VX2 rabbit model of pancreatic cancer is feasible, as verified by imaging and pathologic correlation, and may be a suitable platform to test future interventional therapies.

Collaboration


Dive into the Eric C. Cheon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Grippo

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge