Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Costard is active.

Publication


Featured researches published by Eric Costard.


Infrared Physics & Technology | 2003

Effect of finite pixel size on optical coupling in QWIPs

Alfredo De Rossi; Eric Costard; Nicolas Guérineau; Sylvain Rommeluère

We study the optical coupling in quantum well photodetectors, focusing on finite size effects. We introduced a finite-element model of the detector and we show experimentally that the optical coupling efficiency is strongly dependent on the pixel size and that in very small detectors diffraction dominates the grating coupling. A 640 × 512 QWIP focal plane array was characterized to show that the optical response of thinned samples may depend on the substrate thickness noticeably. These results are in much closer agreement with predictions obtained with our model than using standard techniques.


Proceedings of SPIE, the International Society for Optical Engineering | 2006

THALES long-wave advanced IR QWIP cameras

Stewart Crawford; Robert Craig; Andrew Haining; John Parsons; Eric Costard; Philippe Bois; François-Hugues Gauthier; Olivier Cocle

THALES have developed for volume manufacture two high performance low cost thermal imaging cameras based on the THALES Research & Technology (TRT) 3rd generation gallium arsenide long wave Quantum Well Infrared Photodetector (QWIP) array. Catherine XP provides 768 x 575 CCIR video resolution and Catherine MP provides 1280 x 1024 SXGA video resolution. These compact and rugged cameras provide 24-hour passive observation, detection, recognition, and identification in the 8 to 12μm range, providing resistance to battlefield obscurants and solar dazzle, and are fully self-contained with standard power and communication interfaces. The cameras have expansion capabilities to extend functionality (for example automatic target detection) and have network battlefield capability. Both cameras benefit from the high quantum efficiency and freedom from low frequency noise of the TRT QWIP, allowing operation at 75 K, low integration times and non-interruptive non-uniformity correction. The cameras have successfully reached technology readiness level 6/7 and have commenced environmental qualification testing in order to complete the development programmes. These latest additions to the THALES Catherine family provide high performance thermal imaging at an affordable cost.


Proceedings of SPIE, the International Society for Optical Engineering | 2006

Single color and dual band QWIP production results

Alain Manissadjian; David Gohier; Eric Costard; Alexandru Nedelcu

Since 1997, Sofradir has been working with Thales Research and Technologies (TRT) to develop and implement Quantum Well Infrared Photodetectors (QWIP) as an alternative and complementary offer with Mercury Cadmium Telluride (MCT) Long Wave (LW) detectors, to provide large LW staring arrays. Thanks to the low dark current technology developed by TRT, the QWIP detectors can be worked at FPA temperature above 73K, enabling the development of new compact IR cameras thanks to the use of compact microcoolers, and today, Sofradir is entering production with these highly compact QWIP components. For the Long Wave applications, SOFRADIR offers the European TV/4 format with the VEGA-LW detector (25μm pitch 384×288 IDDCA) and the full TV format with the SIRIUS-LW detector (20μm pitch 640×512 IDDCA). The first one is under production for several hundreds of units, to equip the Catherine-XP thermal imager from Thales. The second one has been initially developed for the Catherine-MP high resolution (SXGA) thermal imager and is ready for production. Both detectors present highly uniform performances and sharp images with NETD in the 50mK range when working around 75K at video frame rate. The TV/4 VEGA detector is also offered as a demonstrator for the Mid Wave applications, with a QWIP array adapted to this waveband. In the same time, a dual band MW-LW similar array is developed with spatial coherence, and is currently under demonstration. The performances of these four QWIP detectors are reviewed in this paper.


Infrared Technology and Applications XXX | 2004

QWIP products and building blocks for high-performance systems

Eric Costard; Philippe Bois; Xavier Marcadet; Alexandru Nedelcu

Standard GaAs/AlGaAs Quantum Well Infrared Photodetectors (QWIP) are coming out from the laboratory. In this presentation we demonstrate that production and research cannot be dissociated in order to make the new generation of thermal imagers benefit as fast as possible from the building blocks developed by researchers. Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on AsGa techniques through THALES Research and Technology Laboratory. This QWIP technology, integrated in IDDCA built by Sofradir, allows the realization of large staring arrays for Thermal Imagers (TI) working in the IR band III (8-12 μm). A review of the current QWIP products, offered by Sofradir, is presented. In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and was the key parameter for the production start. Another advantage widely claimed also for QWIPs was the so-called band-gap engineering, allowing the custom design of quantum structure to fulfill the requirements of specific applications like very long wavelength or multispectral detection. In this presentation, we present the performances for Middle Wavelength InfraRed (MWIR) detection and demonstrate the ability of QWIP to cover the two spectral ranges (3-5 μm and 8-20 μm). At last but not least, the versatility of the GaAs processing appeared for QWIPs as an important gift. This assumption was well founded. We give here some results achieved on building blocks for two color QWIP pixels. We also report the expected performances of focal plane arrays we are currently developing with the CEA-LETI-SLIR.


Infrared Technology and Applications XXIII | 1997

Technology of multiple quantum well infrared detectors

Philippe Bois; Eric Costard; Jean-Yves Duboz; Julien Nagle

During the last decade, the QWIPs technology has improved from start to an undeniable maturity level. High performance focal plane arrays have already been realized (ATT, Lockheed-Martin, JPL, . . .) with a spectacular format increase ranging from 128 by 128 up to 640 by 480, and images from bicolor 256 by 256 arrays have been shown last year. All these devices illustrate the high potential of the QWIP technology. In the same time, the modeling of detection mechanism has advanced to permit the present design of specific detectors and their optimization in given operating environments (near 77 K detector temperature for instance). In this communication, we summarize our recent technological studies leading to the next generation of very large infrared detector arrays. We present the QWIP ultimate performances allowed by the standard dual III - V technological processes developed at THOMSON CSF, in terms of pixel size, array filling factor or connectics. The influence of the pixel size for the grating optical coupling is analyzed. We finally include in this analysis our results for more complex devices like multispectral infrared detectors.


Proceedings of SPIE | 2009

QWIP focal plane arrays performances from MWIR up to VLWIR

J. A. Robo; Eric Costard; Jean-Patrick Truffer; Alexandru Nedelcu; Xavier Marcadet; Philippe Bois

Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at the Alcatel-Thales-III-V Lab (formerly part of THALES Research and Technology Laboratory). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. Another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures at various wavelengths in MWIR, LWIR and VLWIR. An overview of the available performances of QWIPs in the whole infrared spectrum is presented here. We also discuss about the under-development products such as dual band and polarimetric structures.


Infrared Technology and Applications XXXIII | 2007

Two color QWIP and extended wavebands

Eric Costard; Jean Patrick Truffer; Odile Huet; Lydie Dua; Alexandru Nedelcu; J. A. Robo; Xavier Marcadet; Nadia Briere de l'Isle; Philippe Bois; Alain Manissadjian; David Gohier

Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at THALES Research and Technology Laboratory. The QWIP technology allows the realization of large staring arrays for Thermal Imagers (TI) working in the long-wave infrared (LWIR) band (8-12 μm). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. The 640x512 LWIR focal plane arrays (FPAs) with 20μm pitch was the demonstration that state of the art performances can be achieved even with small pixels. This opened the field for the realization of usable and affordable megapixel FPAs. Thales Research & Technology (TRT) has been developing third generation GaAs LWIR QWIP arrays for volume manufacture of high performance low cost thermal imaging cameras. In the past, another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures to fulfil the requirements of specific applications such as very long wavelength (VLWIR) or multispectral detection. In this presentation, we present the performances of both our first 384x288, 25 μm pitch, MWIR (3-5μm) / LWIR (8-9 μm) dual-band FPAs, and the current status of QWIPs for MWIR (< 5μm) and VLWIR (>15μm) arrays.


SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1998

Latest improvements in QWIP technology at Thomson-CSF/LCR

Eric Costard; Philippe Bois; Francis Audier; Eric Herniou

A novel architecture for both QWIP heterostructure and pixel design is described. This new approach completely eliminates the dark current of a conventional GaAs/GaAlAs multiple quantum well LWIR detector. The concept is first described, then the industrial feasibility is demonstrated on a 4 X 2 array with 50 micrometer pixel pitch. The performance modeling of FPA based on this new design shows that NETD as low as 15 mK is achievable at an operating temperature of 90 K and for arrays with 30 micrometer pitch.


Proceedings of SPIE | 2012

InGaAs focal plane array developments at III-V Lab

Anne Rouvié; Jean-Luc Reverchon; Odile Huet; Anis Djedidi; J. A. Robo; Jean-Patrick Truffer; Toufiq Bria; Mauricio Pires; J. Decobert; Eric Costard

SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. For few years, III-VLab has been studying InGaAs imagery, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has lead to put quickly on the market a 320x256 InGaAs module, exhibiting high performances in terms of dark current, uniformity and quantum efficiency. In this paper, we present the last developments achieved in our laboratory, mainly focused on increasing the pixels number to VGA format associated to pixel pitch decrease (15μm) and broadening detection spectrum toward visible wavelengths. Depending on targeted applications, different Read Out Integrated Circuits (ROIC) have been used. Low noise ROIC have been developed by CEA LETI to fit the requirements of low light level imaging whereas logarithmic ROIC designed by NIT allows high dynamic imaging adapted for automotive safety.


Proceedings of SPIE, the International Society for Optical Engineering | 2008

Advantages of quantum cascade detectors

Aurore Gomez; Mathieu Carras; Alexandru Nedelcu; Eric Costard; Xavier Marcadet; Vincent Berger

Quantum cascade detectors (QCDs) have been introduced recently as a photovoltaic candidate to infrared detection. Since QCDs work with no applied bias, longer integration time and different read-out circuits can be used. Depending on the application, QCDs could be preferred to QWIPs. The systematic comparison between QCDs and QWIPs is difficult due to the large number of parameters in a thermal imager for a given application. Here we propose a first comparison between these two devices, starting with several examples, based on specific cases. In particular, it is shown that QCDs in the 8-12 µm band are an interesting alternative to QWIPs if higher operating temperature is required.

Collaboration


Dive into the Eric Costard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Höglund

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Asplund

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge