Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Gilson is active.

Publication


Featured researches published by Eric Gilson.


Journal of Clinical Investigation | 2007

Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect

Erica Salvati; Carlo Leonetti; Angela Rizzo; Marco Scarsella; Marcella Mottolese; Rossella Galati; Isabella Sperduti; Malcolm F. G. Stevens; Maurizio D'Incalci; Maria A. Blasco; Giovanna Chiorino; Serge Bauwens; Béatrice Horard; Eric Gilson; Antonella Stoppacciaro; Gabriella Zupi; Annamaria Biroccio

Functional telomeres are required for the replicability of cancer cells. The G-rich strand of telomeric DNA can fold into a 4-stranded structure known as the G-quadruplex (G4), whose stabilization alters telomere function limiting cancer cell growth. Therefore, the G4 ligand RHPS4 may possess antitumor activity. Here, we show that RHPS4 triggers a rapid and potent DNA damage response at telomeres in human transformed fibroblasts and melanoma cells, characterized by the formation of several telomeric foci containing phosphorylated DNA damage response factors gamma-H2AX, RAD17, and 53BP1. This was dependent on DNA repair enzyme ATR, correlated with delocalization of the protective telomeric DNA-binding protein POT1, and was antagonized by overexpression of POT1 or TRF2. In mice, RHPS4 exerted its antitumor effect on xenografts of human tumor cells of different histotype by telomere injury and tumor cell apoptosis. Tumor inhibition was accompanied by a strong DNA damage response, and tumors overexpressing POT1 or TRF2 were resistant to RHPS4 treatment. These data provide evidence that RHPS4 is a telomere damage inducer and that telomere disruption selectively triggered in malignant cells results in a high therapeutic index in mice. They also define a functional link between telomere damage and antitumor activity and reveal the key role of telomere-protective factors TRF2 and POT1 in response to this anti-telomere strategy.


Nature Cell Biology | 2009

A two-step model for senescence triggered by a single critically short telomere

Pauline Abdallah; Pierre Luciano; Kurt W. Runge; Michael Lisby; Vincent Géli; Eric Gilson; M. Teresa Teixeira

Telomeres protect chromosome ends from fusion and degradation. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence. Here, we show that telomerase-deficient cells bearing a single, very short telomere senesce earlier, demonstrating that the length of the shortest telomere is a major determinant of the onset of senescence. We further show that Mec1p–ATR specifically recognizes the single, very short telomere causing the accelerated senescence. Strikingly, before entering senescence, cells divide for several generations despite complete erosion of their shortened telomeres. This pre-senescence growth requires RAD52 (radiation sensitive) and MMS1 (methyl methane sulfonate sensitive), and there is no evidence for major inter-telomeric recombination. We propose that, in the absence of telomerase, a very short telomere is first maintained in a pre-signalling state by a RAD52–MMS1-dependent pathway and then switches to a signalling state leading to senescence through a Mec1p-dependent checkpoint.


Cell | 2010

TRF2 and Apollo Cooperate with Topoisomerase 2α to Protect Human Telomeres from Replicative Damage

Jing Ye; Christelle Lenain; Serge Bauwens; Angela Rizzo; Adelaı̈de Saint-Léger; Anaı̈s Poulet; Delphine Benarroch; Frédérique Magdinier; Julia Morere; Simon Amiard; Els Verhoeyen; Sébastien Britton; Patrick Calsou; Bernard Salles; Anna Bizard; Marc Nadal; Erica Salvati; Laure Sabatier; Yunlin Wu; Annamaria Biroccio; Arturo Londoño-Vallejo; Marie-Josèphe Giraud-Panis; Eric Gilson

Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5 exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres.


Clinical Cancer Research | 2008

G-Quadruplex Ligand RHPS4 Potentiates the Antitumor Activity of Camptothecins in Preclinical Models of Solid Tumors

Carlo Leonetti; Marco Scarsella; Giuseppe Riggio; Angela Maria Rizzo; Erica Salvati; Maurizio D'Incalci; Lidia Staszewsky; Roberta Frapolli; Malcolm F. G. Stevens; Antonella Stoppacciaro; Marcella Mottolese; Barbara Antoniani; Eric Gilson; Gabriella Zupi; Annamaria Biroccio

Purpose: The formation of G-quadruplex structures at telomeric DNA sequences blocks telomerase activity, offering an original strategy to design and develop new antitumor agents. The pentacyclic acridinium salt RHPS4 is one of the most effective and selective G4 ligands able to rapidly disrupt telomere architecture, resulting in apoptosis of cancer cells. Here, we studied the therapeutic index of RHPS4 and its integration with chemotherapeutics in preclinical model of solid tumors. Experimental Design: The antitumoral activity of RHPS4 was evaluated on human xenografts of different histotypes and compared with that of standard antineoplastic agents. Moreover, the effect of RHPS4/chemotherapeutics combinations on cell survival was studied and the most favorable combination was evaluated on tumor-bearing mice. Results: RHPS4 was active in vivo as single agent and showed a high therapeutic efficacy when compared with conventional drugs. Moreover, RHPS4 had antitumoral activity in human melanoma xenografts inherently resistant to chemotherapy and exhibited antimetastatic activity. RHPS4 also showed a strong synergistic interaction with camptothecins and this effect was strictly dependent on the drug sequence employed. Treatment of mice with irinotecan followed by RHPS4 was able to inhibit and delay tumor growth and to increase mice survival. Conclusions: Our data show that RHPS4 has a good pharmacodynamic profile and in combination therapy produces a strong antitumoral activity, identifying this drug as promising agent for clinical development.


The EMBO Journal | 2010

SNMIB/Apollo protects leading‐strand telomeres against NHEJ‐mediated repair

Yung C. Lam; Shamima Akhter; Peili Gu; Jing Ye; Anaïs Poulet; Marie Josèphe Giraud-Panis; Susan M. Bailey; Eric Gilson; Randy J. Legerski; Sandy Chang

Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cells inability to distinguish dysfunctional telomeric ends from DNA double‐strand breaks. SNMIB/Apollo is a shelterin‐associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid‐type fusions involving telomeres created by leading‐strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollos conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading‐strand telomeres. SNMIB/Apollo−/−ATM−/− MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5′–3′ exonuclease function of SNM1B/Apollo in the generation of 3′ single‐stranded overhangs at newly replicated leading‐strand telomeres to protect them from engaging the non‐homologous end‐joining pathway.


Oncogene | 2010

PARP1 is activated at telomeres upon G4 stabilization: Possible target for telomere-based therapy

Erica Salvati; Marco Scarsella; Manuela Porru; Angela Rizzo; Sara Iachettini; Lucio Tentori; Grazia Graziani; Maurizio D'Incalci; Malcolm F. G. Stevens; Augusto Orlandi; Daniela Passeri; Eric Gilson; Gabriella Zupi; Carlo Leonetti; Annamaria Biroccio

New anti-telomere strategies represent important goals for the development of selective cancer therapies. In this study, we reported that uncapped telomeres, resulting from pharmacological stabilization of quadruplex DNA by RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate), trigger specific recruitment and activation of poly-adenosine diphosphate (ADP) ribose polymerase I (PARP1) at the telomeres, forming several ADP-ribose polymers that co-localize with the telomeric repeat binding factor 1 protein and are inhibited by selective PARP(s) inhibitors or PARP1-specific small interfering RNAs. The knockdown of PARP1 prevents repairing of RHPS4-induced telomere DNA breaks, leading to increases in chromosome abnormalities and eventually to the inhibition of tumor cell growth both in vitro and in xenografts. More interestingly, the integration of a TOPO1 inhibitor on the combination treatment proved to have a high therapeutic efficacy ensuing a complete regression of the tumor as well as a significant increase in overall survival and cure of mice even when treatments started at a very late stage of tumor growth. Overall, this work reveals the unexplored link between the PARP1 and G-quadruplex ligands and demonstrates the excellent efficacy of a multi-component strategy based on the use of PARP inhibitors in telomere-based therapy.


Nucleic Acids Research | 2009

A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells

Angéline Eymery; Béatrice Horard; Michèle El Atifi-Borel; Geneviève Fourel; François Berger; Anne-Laure Vitte; Arnaud Van Den Broeck; Elisabeth Brambilla; Alexandra Fournier; Mary Callanan; Sylvie Gazzeri; Saadi Khochbin; Sophie Rousseaux; Eric Gilson; Claire Vourc’h

Although there is now evidence that the expression of centromeric (CT) and pericentric (PCT) sequences are key players in major genomic functions, their transcriptional status in human cells is still poorly known. The main reason for this lack of data is the complexity and high level of polymorphism of these repeated sequences, which hampers straightforward analyses by available transcriptomic approaches. Here a transcriptomic macro-array dedicated to the analysis of CT and PCT expression is developed and validated in heat-shocked (HS) HeLa cells. For the first time, the expression status of CT and PCT sequences is analyzed in a series of normal and cancer human cells and tissues demonstrating that they are repressed in all normal tissues except in the testis, where PCT transcripts are found. Moreover, PCT sequences are specifically expressed in HS cells in a Heat-Shock Factor 1 (HSF1)-dependent fashion, and we show here that another independent pathway, involving DNA hypo-methylation, can also trigger their expression. Interestingly, CT and PCT were found illegitimately expressed in somatic cancer samples, whereas PCT were repressed in testis cancer, suggesting that the expression of CT and PCT sequences may represent a good indicator of epigenetic deregulations occurring in response to environmental changes or in cell transformation.


Nature Reviews Genetics | 2014

Transcriptional outcome of telomere signalling

Jing Ye; Valérie M. Renault; Karine Jamet; Eric Gilson

Telomeres protect chromosome ends from degradation and inappropriate DNA damage response activation through their association with specific factors. Interestingly, these telomeric factors are able to localize outside telomeric regions, where they can regulate the transcription of genes involved in metabolism, immunity and differentiation. These findings delineate a signalling pathway by which telomeric changes control the ability of their associated factors to regulate transcription. This mechanism is expected to enable a greater diversity of cellular responses that are adapted to specific cell types and telomeric changes, and may therefore represent a pivotal aspect of development, ageing and telomere-mediated diseases.


Nature Cell Biology | 2013

TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells

Annamaria Biroccio; Julien Cherfils-Vicini; Adeline Augereau; Sébastien Pinte; Serge Bauwens; Jing Ye; Thomas Simonet; Béatrice Horard; Karine Jamet; Ludovic Cervera; Aaron Mendez-Bermudez; Delphine Poncet; Renée Grataroli; Claire T Kint De Rodenbeeke; Erica Salvati; Angela Rizzo; Pasquale Zizza; Michelle Ricoul; Céline Cognet; Thomas Kuilman; Helene Duret; Florian Lepinasse; Jacqueline Marvel; Els Verhoeyen; François-Loïc Cosset; Daniel S. Peeper; Mark J. Smyth; Arturo Londoño-Vallejo; Laure Sabatier; Vincent Picco

Dysfunctional telomeres suppress tumour progression by activating cell-intrinsic programs that lead to growth arrest. Increased levels of TRF2, a key factor in telomere protection, are observed in various human malignancies and contribute to oncogenesis. We demonstrate here that a high level of TRF2 in tumour cells decreased their ability to recruit and activate natural killer (NK) cells. Conversely, a reduced dose of TRF2 enabled tumour cells to be more easily eliminated by NK cells. Consistent with these results, a progressive upregulation of TRF2 correlated with decreased NK cell density during the early development of human colon cancer. By screening for TRF2-bound genes, we found that HS3ST4—a gene encoding for the heparan sulphate (glucosamine) 3-O-sulphotransferase 4—was regulated by TRF2 and inhibited the recruitment of NK cells in an epistatic relationship with TRF2. Overall, these results reveal a TRF2-dependent pathway that is tumour-cell extrinsic and regulates NK cell immunity.


The EMBO Journal | 2010

TRF2/RAP1 and DNA–PK mediate a double protection against joining at telomeric ends

Oriane Bombarde; Céline Boby; Dennis Gomez; Philippe Frit; Marie-Josèphe Giraud-Panis; Eric Gilson; Bernard Salles; Patrick Calsou

DNA‐dependent protein kinase (DNA‐PK) is a double‐strand breaks repair complex, the subunits of which (KU and DNA‐PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA–PK prevented from initiating classical ligase IV (LIG4)‐dependent non‐homologous end‐joining (C‐NHEJ) at telomeres and how is the backup end‐joining (EJ) activity (B‐NHEJ) that operates at telomeres under conditions of C‐NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double‐stranded telomeric tracks and human cell extracts with variable C‐NHEJ or B‐NHEJ activity. We found that (1) TRF2/RAP1 prevents C‐NHEJ‐mediated end fusion at the initial DNA–PK end binding and activation step and (2) DNA–PK counteracts a potent LIG4‐independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non‐classical EJ pathways for telomere fusions in cells.

Collaboration


Dive into the Eric Gilson's collaboration.

Top Co-Authors

Avatar

Annamaria Biroccio

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Erica Salvati

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Jing Ye

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Serge Bauwens

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Angela Rizzo

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Carlo Leonetti

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Frédérique Magdinier

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Gabriella Zupi

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Jean-François Michiels

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Manuela Porru

École normale supérieure de Lyon

View shared research outputs
Researchain Logo
Decentralizing Knowledge