Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erica Salvati is active.

Publication


Featured researches published by Erica Salvati.


Journal of Clinical Investigation | 2007

Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect

Erica Salvati; Carlo Leonetti; Angela Rizzo; Marco Scarsella; Marcella Mottolese; Rossella Galati; Isabella Sperduti; Malcolm F. G. Stevens; Maurizio D'Incalci; Maria A. Blasco; Giovanna Chiorino; Serge Bauwens; Béatrice Horard; Eric Gilson; Antonella Stoppacciaro; Gabriella Zupi; Annamaria Biroccio

Functional telomeres are required for the replicability of cancer cells. The G-rich strand of telomeric DNA can fold into a 4-stranded structure known as the G-quadruplex (G4), whose stabilization alters telomere function limiting cancer cell growth. Therefore, the G4 ligand RHPS4 may possess antitumor activity. Here, we show that RHPS4 triggers a rapid and potent DNA damage response at telomeres in human transformed fibroblasts and melanoma cells, characterized by the formation of several telomeric foci containing phosphorylated DNA damage response factors gamma-H2AX, RAD17, and 53BP1. This was dependent on DNA repair enzyme ATR, correlated with delocalization of the protective telomeric DNA-binding protein POT1, and was antagonized by overexpression of POT1 or TRF2. In mice, RHPS4 exerted its antitumor effect on xenografts of human tumor cells of different histotype by telomere injury and tumor cell apoptosis. Tumor inhibition was accompanied by a strong DNA damage response, and tumors overexpressing POT1 or TRF2 were resistant to RHPS4 treatment. These data provide evidence that RHPS4 is a telomere damage inducer and that telomere disruption selectively triggered in malignant cells results in a high therapeutic index in mice. They also define a functional link between telomere damage and antitumor activity and reveal the key role of telomere-protective factors TRF2 and POT1 in response to this anti-telomere strategy.


Proceedings of the National Academy of Sciences of the United States of America | 2009

β-Arrestin links endothelin A receptor to β-catenin signaling to induce ovarian cancer cell invasion and metastasis

Laura Rosanò; R. Cianfrocca; Stefano Masi; Francesca Spinella; Valeriana Di Castro; Annamaria Biroccio; Erica Salvati; Maria Rita Nicotra; Pier Giorgio Natali; Anna Bagnato

The activation of endothelin-A receptor (ETAR) by endothelin-1 (ET-1) has a critical role in ovarian tumorigenesis and progression. To define the molecular mechanism in ET-1-induced tumor invasion and metastasis, we focused on β-arrestins as scaffold and signaling proteins of G protein-coupled receptors. Here, we demonstrate that, in ovarian cancer cells, β-arrestin is recruited to ETAR to form two trimeric complexes: one through the interaction with Src leading to epithelial growth factor receptor (EGFR) transactivation and β-catenin Tyr phosphorylation, and the second through the physical association with axin, contributing to release and inactivation of glycogen synthase kinase (GSK)-3β and β-catenin stabilization. The engagement of β-arrestin in these two signaling complexes concurs to activate β-catenin signaling pathways. We then demonstrate that silencing of both β-arrestin-1 and β-arrestin-2 inhibits ETAR-driven signaling, causing suppression of Src, mitogen-activated protein kinase (MAPK), AKT activation, as well as EGFR transactivation and a complete inhibition of ET-1-induced β-catenin/TCF transcriptional activity and cell invasion. ETAR blockade with the specific ETAR antagonist ZD4054 abrogates the engagement of β-arrestin in the interplay between ETAR and the β-catenin pathway in the invasive program. Finally, ETAR is expressed in 85% of human ovarian cancers and is preferentially co-expressed with β-arrestin-1 in the advanced tumors. In a xenograft model of ovarian metastasis, HEY cancer cells expressing β-arrestin-1 mutant metastasize at a reduced rate, highlighting the importance of this molecule in promoting metastases. ZD4054 treatment significantly inhibits metastases, suggesting that specific ETAR antagonists, by disabling multiple signaling activated by ETAR/β-arrestin, may represent new therapeutic opportunities for ovarian cancer.


Nucleic Acids Research | 2009

Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM signaling pathway.

Angela Rizzo; Erica Salvati; Manuela Porru; Carmen D’Angelo; Malcolm F. G. Stevens; Maurizio D’Incalci; Carlo Leonetti; Eric Gilson; Gabriella Zupi; Annamaria Biroccio

Functional telomeres are required to maintain the replicative ability of cancer cells and represent putative targets for G-quadruplex (G4) ligands. Here, we show that the pentacyclic acridinium salt RHPS4, one of the most effective and selective G4 ligands, triggers damages in cells traversing S phase by interfering with telomere replication. Indeed, we found that RHPS4 markedly reduced BrdU incorporation at telomeres and altered the dynamic association of the telomeric proteins TRF1, TRF2 and POT1, leading to chromosome aberrations such as telomere fusions and telomere doublets. Analysis of the molecular damage pathway revealed that RHPS4 induced an ATR-dependent ATM signaling that plays a functional role in the cellular response to RHPS4 treatment. We propose that RHPS4, by stabilizing G4 DNA at telomeres, impairs fork progression and/or telomere processing resulting in telomere dysfunction and activation of a replication stress response pathway. The detailed understanding of the molecular mode of action of this class of compounds makes them attractive tools to understand telomere biology and provides the basis for a rational use of G4 ligands for the therapy of cancer.


Clinical Cancer Research | 2008

G-Quadruplex Ligand RHPS4 Potentiates the Antitumor Activity of Camptothecins in Preclinical Models of Solid Tumors

Carlo Leonetti; Marco Scarsella; Giuseppe Riggio; Angela Maria Rizzo; Erica Salvati; Maurizio D'Incalci; Lidia Staszewsky; Roberta Frapolli; Malcolm F. G. Stevens; Antonella Stoppacciaro; Marcella Mottolese; Barbara Antoniani; Eric Gilson; Gabriella Zupi; Annamaria Biroccio

Purpose: The formation of G-quadruplex structures at telomeric DNA sequences blocks telomerase activity, offering an original strategy to design and develop new antitumor agents. The pentacyclic acridinium salt RHPS4 is one of the most effective and selective G4 ligands able to rapidly disrupt telomere architecture, resulting in apoptosis of cancer cells. Here, we studied the therapeutic index of RHPS4 and its integration with chemotherapeutics in preclinical model of solid tumors. Experimental Design: The antitumoral activity of RHPS4 was evaluated on human xenografts of different histotypes and compared with that of standard antineoplastic agents. Moreover, the effect of RHPS4/chemotherapeutics combinations on cell survival was studied and the most favorable combination was evaluated on tumor-bearing mice. Results: RHPS4 was active in vivo as single agent and showed a high therapeutic efficacy when compared with conventional drugs. Moreover, RHPS4 had antitumoral activity in human melanoma xenografts inherently resistant to chemotherapy and exhibited antimetastatic activity. RHPS4 also showed a strong synergistic interaction with camptothecins and this effect was strictly dependent on the drug sequence employed. Treatment of mice with irinotecan followed by RHPS4 was able to inhibit and delay tumor growth and to increase mice survival. Conclusions: Our data show that RHPS4 has a good pharmacodynamic profile and in combination therapy produces a strong antitumoral activity, identifying this drug as promising agent for clinical development.


Oncogene | 2010

PARP1 is activated at telomeres upon G4 stabilization: Possible target for telomere-based therapy

Erica Salvati; Marco Scarsella; Manuela Porru; Angela Rizzo; Sara Iachettini; Lucio Tentori; Grazia Graziani; Maurizio D'Incalci; Malcolm F. G. Stevens; Augusto Orlandi; Daniela Passeri; Eric Gilson; Gabriella Zupi; Carlo Leonetti; Annamaria Biroccio

New anti-telomere strategies represent important goals for the development of selective cancer therapies. In this study, we reported that uncapped telomeres, resulting from pharmacological stabilization of quadruplex DNA by RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate), trigger specific recruitment and activation of poly-adenosine diphosphate (ADP) ribose polymerase I (PARP1) at the telomeres, forming several ADP-ribose polymers that co-localize with the telomeric repeat binding factor 1 protein and are inhibited by selective PARP(s) inhibitors or PARP1-specific small interfering RNAs. The knockdown of PARP1 prevents repairing of RHPS4-induced telomere DNA breaks, leading to increases in chromosome abnormalities and eventually to the inhibition of tumor cell growth both in vitro and in xenografts. More interestingly, the integration of a TOPO1 inhibitor on the combination treatment proved to have a high therapeutic efficacy ensuing a complete regression of the tumor as well as a significant increase in overall survival and cure of mice even when treatments started at a very late stage of tumor growth. Overall, this work reveals the unexplored link between the PARP1 and G-quadruplex ligands and demonstrates the excellent efficacy of a multi-component strategy based on the use of PARP inhibitors in telomere-based therapy.


Nature Cell Biology | 2013

TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells

Annamaria Biroccio; Julien Cherfils-Vicini; Adeline Augereau; Sébastien Pinte; Serge Bauwens; Jing Ye; Thomas Simonet; Béatrice Horard; Karine Jamet; Ludovic Cervera; Aaron Mendez-Bermudez; Delphine Poncet; Renée Grataroli; Claire T Kint De Rodenbeeke; Erica Salvati; Angela Rizzo; Pasquale Zizza; Michelle Ricoul; Céline Cognet; Thomas Kuilman; Helene Duret; Florian Lepinasse; Jacqueline Marvel; Els Verhoeyen; François-Loïc Cosset; Daniel S. Peeper; Mark J. Smyth; Arturo Londoño-Vallejo; Laure Sabatier; Vincent Picco

Dysfunctional telomeres suppress tumour progression by activating cell-intrinsic programs that lead to growth arrest. Increased levels of TRF2, a key factor in telomere protection, are observed in various human malignancies and contribute to oncogenesis. We demonstrate here that a high level of TRF2 in tumour cells decreased their ability to recruit and activate natural killer (NK) cells. Conversely, a reduced dose of TRF2 enabled tumour cells to be more easily eliminated by NK cells. Consistent with these results, a progressive upregulation of TRF2 correlated with decreased NK cell density during the early development of human colon cancer. By screening for TRF2-bound genes, we found that HS3ST4—a gene encoding for the heparan sulphate (glucosamine) 3-O-sulphotransferase 4—was regulated by TRF2 and inhibited the recruitment of NK cells in an epistatic relationship with TRF2. Overall, these results reveal a TRF2-dependent pathway that is tumour-cell extrinsic and regulates NK cell immunity.


Oncogene | 2013

β-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling

Laura Rosanò; R. Cianfrocca; Piera Tocci; Francesca Spinella; V Di Castro; F Spadaro; Erica Salvati; Annamaria Biroccio; Pier Giorgio Natali; Anna Bagnato

Despite the fundamental pathophysiological importance of β-catenin in tumor progression, the mechanism underlying its final transcriptional output has been partially elucidated. Here, we report that β-arrestin-1 (β-arr1) is an epigenetic regulator of endothelin (ET)-1-induced β-catenin signaling in epithelial ovarian cancer (EOC). In response to ET A receptor (ETAR) activation by ET-1, β-arr1 increases its nuclear translocation and direct binding to β-catenin. This in turn enhanced β-catenin nuclear accumulation and transcriptional activity, which was prevented by expressing a mutant β-arr1 incapable of nuclear distribution. β-arr1–β-catenin interaction controls β-catenin target gene expressions, such as ET-1, Axin 2, Matrix metalloproteinase 2, and Cyclin D1, by promoting histone deacetylase 1 (HDAC1) dissociation and the recruitment of p300 acetyltransferase on these promoter genes, resulting in enhanced H3 and H4 histone acetylation, and gene transcription, required for cell migration, invasion and epithelial-to-mesenchymal transition. These effects are abrogated by β-arr1 silencing or by mutant β-arr1, as well as by β-catenin or p300 silencing, confirming that nuclear β-arr1 forms a functional complex capable of regulating epigenetic changes in β-catenin-driven invasive behavior. In a murine orthotopic model of metastatic human EOC, silencing of β-arr1 or mutant β-arr1 expression, as well as ETAR blockade, inhibits metastasis. In human EOC tissues, β-arr1–β-catenin nuclear complexes are selectively enriched at β-catenin target gene promoters, correlating with tumor grade, confirming a direct in vivo β-arr1–β-catenin association at specific set of genes involved in EOC progression. Collectively, our study provides insights into how a β-arr1-mediated epigenetic mechanism controls β-catenin activity, unraveling new components required for its nuclear function in promoting metastasis.


Journal of Medicinal Chemistry | 2011

N-cyclic bay-substituted perylene G-quadruplex ligands have selective antiproliferative effects on cancer cells and induce telomere damage.

Casagrande; Erica Salvati; Antonello Alvino; Armandodoriano Bianco; A Ciammaichella; Carmen D'Angelo; L Ginnari-Satriani; Am Serrilli; Sara Iachettini; Carlo Leonetti; Stephen Neidle; Giancarlo Ortaggi; Manuela Porru; Angela Rizzo; Marco Franceschin; Annamaria Biroccio

A series of bay-substituted perylene derivatives is reported as a new class of G-quadruplex ligands. The synthesized compounds have differing N-cyclic substituents on the bay area and differing side chains on the perylene major axis. ESI-MS and FRET measurements highlighted the strongest quadruplex binders in this series and those showing the highest quadruplex/duplex selectivity. Several biological assays were performed on these compounds, which showed that compound 5 (PPL3C) triggered a DNA damage response in transformed cells with the formation of telomeric foci containing phosphorylated γ-H2AX and 53BP1. This effect mainly occurred in replicating cells and was consistent with Pot1 dissociation. Compound 5 does not induce telomere damage in normal cells, which are unaffected by treatment with the compound, suggesting that this agent preferentially kills cancer cells. These results reinforce the notion that G-quadruplex binding compounds can act as broad inhibitors of telomere-related processes and have potential as selective antineoplastic drugs.


Journal of Medicinal Chemistry | 2013

Exploring the Chemical Space of G‑Quadruplex Binders: Discovery of a Novel Chemotype Targeting the Human Telomeric Sequence

Francesco Saverio Di Leva; Pasquale Zizza; Chiara Cingolani; Carmen D'Angelo; Bruno Pagano; Jussara Amato; Erica Salvati; Claudia Sissi; Odra Pinato; Luciana Marinelli; Andrea Cavalli; Sandro Cosconati; Ettore Novellino; Antonio Randazzo; Annamaria Biroccio

Recent findings have unambiguously demonstrated that DNA G-rich sequences can adopt a G-quadruplex folding in living cells, thus further validating them as crucial targets for anticancer therapy. Herein, to identify new potent G4 binders as antitumor drug candidates, we have targeted a 24-nt G4-forming telomeric sequence employing a receptor-based virtual screening approach. Among the best candidates, in vitro binding experiments allowed identification of three novel G4 ligands. Among them, the best compound features an unprecedented binding selectivity for the human telomeric DNA G-quadruplex with no detectable binding for other G4-forming sequences present at different genomic sites. This behavior correlates with the detected ability to generate DNA damage response in tumor cells at the telomeric level and efficient antiproliferative effect on different tumor cell lines at low micromolar concentrations.


Clinical Cancer Research | 2011

DNA Damage Persistence as Determinant of Tumor Sensitivity to the Combination of Topo I Inhibitors and Telomere-Targeting Agents

Annamaria Biroccio; Manuela Porru; Angela Maria Rizzo; Erica Salvati; Carmen D'Angelo; Augusto Orlandi; Daniela Passeri; Marco Franceschin; Malcolm F. G. Stevens; Eric Gilson; Giovanni Luca Beretta; Gabriella Zupi; Claudio Pisano; Franco Zunino; Carlo Leonetti

Purpose: We previously reported that the G-quadruplex (G4) ligand RHPS4 potentiates the antitumor activity of camptothecins both in vitro and in tumor xenografts. The present study aims at investigating the mechanisms involved in this specific drug interaction. Experimental Design: Combination index test was used to evaluate the interaction between G4 ligands and standard or novel Topo I inhibitors. Chromatin immunoprecipitation was performed to study the presence at telomeres of various types of topisomerase, while immunolabeling experiments were performed to measure the activation of DNA damage both in vitro and in tumor xenografts. Results: We report that integration of the Topo I inhibitor SN-38, but not the Topo II poison doxorubicin with telomere-based therapy is strongly effective and the sequence of drug administration is critical in determining the synergistic interaction, impairing the cell ability to recover from drug-induced cytotoxicity. The synergistic effect of this combination was also observed by using novel camptothecins and, more interestingly, mice treated with ST1481/RHPS4 combination showed an inhibition and delay of tumor growth as well as an increased survival. The study of the mechanism(s) revealed that treatment with G4 ligands increased Topo I at the telomeres and the functional relevance of this observation was directly assessed by showing that standard and novel camptothecins stabilized DNA damage both in vitro and in xenografts. Conclusions: Our results demonstrate an outstanding efficacy of Topo I inhibitors/G4 ligands combination, which likely reflects an enhanced and persistent activation of DNA damage response as a critical determinant of the therapeutic improvement. Clin Cancer Res; 17(8); 2227–36. ©2011 AACR.

Collaboration


Dive into the Erica Salvati's collaboration.

Top Co-Authors

Avatar

Annamaria Biroccio

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Carlo Leonetti

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Angela Rizzo

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Eric Gilson

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Manuela Porru

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen D'Angelo

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Gabriella Zupi

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Ettore Novellino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Bruno Pagano

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge