Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric H. Baehrecke is active.

Publication


Featured researches published by Eric H. Baehrecke.


Cell Death & Differentiation | 2012

Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012

Lorenzo Galluzzi; Ilio Vitale; John M. Abrams; Emad S. Alnemri; Eric H. Baehrecke; Mikhail V. Blagosklonny; Ted M. Dawson; Valina L. Dawson; Wafik S. El-Deiry; Simone Fulda; Eyal Gottlieb; Douglas R. Green; Michael O. Hengartner; Oliver Kepp; Richard A. Knight; Sharad Kumar; Stuart A. Lipton; Xin Lu; Frank Madeo; Walter Malorni; Patrick Mehlen; Gabriel Núñez; Marcus E. Peter; Mauro Piacentini; David C. Rubinsztein; Yufang Shi; Hans-Uwe Simon; Peter Vandenabeele; Eileen White; Junying Yuan

In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including ‘apoptosis’, ‘necrosis’ and ‘mitotic catastrophe’. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.


Nature | 2007

HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS

Udai Bhan Pandey; Zhiping Nie; Yakup Batlevi; Brett A. McCray; Gillian P. Ritson; Natalia B. Nedelsky; Stephanie Schwartz; Nicholas A. Diprospero; Melanie A. Knight; Oren Schuldiner; Ranjani Padmanabhan; Marc Hild; Deborah L. Berry; Dan Garza; Charlotte Hubbert; Tso-Pang Yao; Eric H. Baehrecke; J. Paul Taylor

A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway. The UPS and autophagy have long been viewed as complementary degradation systems with no point of intersection. This view has been challenged by two observations suggesting an apparent interaction: impairment of the UPS induces autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to neurodegeneration with ubiquitin-positive pathology. It is not known whether autophagy is strictly a parallel degradation system, or whether it is a compensatory degradation system when the UPS is impaired; furthermore, if there is a compensatory interaction between these systems, the molecular link is not known. Here we show that autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. We found that compensatory autophagy was induced in response to mutations affecting the proteasome and in response to UPS impairment in a fly model of the neurodegenerative disease spinobulbar muscular atrophy. Autophagy compensated for impaired UPS function in an HDAC6-dependent manner. Furthermore, expression of HDAC6 was sufficient to rescue degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner. This study suggests that impairment of autophagy (for example, associated with ageing or genetic variation) might predispose to neurodegeneration. Morover, these findings suggest that it may be possible to intervene in neurodegeneration by augmenting HDAC6 to enhance autophagy.


Nature Reviews Molecular Cell Biology | 2005

Autophagy: dual roles in life and death?

Eric H. Baehrecke

Autophagy is an evolutionarily conserved mechanism for the degradation of cellular components in the cytoplasm, and serves as a cell survival mechanism in starving cells. Recent studies indicate that autophagy also functions in cell death, but the precise role of this catabolic process in dying cells is not clear. Here I discuss the possible roles for autophagy in dying cells and how understanding the relationship between autophagy, cell survival and cell death is important for health and development.


Nature | 2010

Termination of autophagy and reformation of lysosomes regulated by mTOR

Li Yu; Christina K. McPhee; Lixin Zheng; Gonzalo A. Mardones; Yueguang Rong; Junya Peng; Na Mi; Ying Zhao; Zhihua Liu; Fengyi Wan; Dale W. Hailey; Viola Oorschot; Judith Klumperman; Eric H. Baehrecke; Michael J. Lenardo

Autophagy is an evolutionarily conserved process by which cytoplasmic proteins and organelles are catabolized. During starvation, the protein TOR (target of rapamycin), a nutrient-responsive kinase, is inhibited, and this induces autophagy. In autophagy, double-membrane autophagosomes envelop and sequester intracellular components and then fuse with lysosomes to form autolysosomes, which degrade their contents to regenerate nutrients. Current models of autophagy terminate with the degradation of the autophagosome cargo in autolysosomes, but the regulation of autophagy in response to nutrients and the subsequent fate of the autolysosome are poorly understood. Here we show that mTOR signalling in rat kidney cells is inhibited during initiation of autophagy, but reactivated by prolonged starvation. Reactivation of mTOR is autophagy-dependent and requires the degradation of autolysosomal products. Increased mTOR activity attenuates autophagy and generates proto-lysosomal tubules and vesicles that extrude from autolysosomes and ultimately mature into functional lysosomes, thereby restoring the full complement of lysosomes in the cell—a process we identify in multiple animal species. Thus, an evolutionarily conserved cycle in autophagy governs nutrient sensing and lysosome homeostasis during starvation.Autophagy is an evolutionarily conserved process to catabolize cytoplasmic proteins and organelles1, 2. During starvation, the target of rapamycin (TOR), a nutrient-responsive kinase, is inhibited, thereby inducing autophagy. In autophagy, double-membrane autophagosomes envelop and sequester intracellular components and then fuse with lysosomes to form autolysosomes which degrade their contents to regenerate nutrients. Current models of autophagy terminate with the degradation of autophagosome cargo in autolysosomes3-5, but the regulation of autophagy in response to nutrients and the subsequent fate of the autolysosome are poorly defined. Here we show that mTOR signaling is inhibited during autophagy initiation, but reactivated with prolonged starvation. mTOR reactivation is autophagy-dependent, and requires the degradation of autolysosomal products. Increased mTOR activity attenuates autophagy and generates proto-lysosomal tubules and vesicles that extrude from autolysosomes and ultimately mature into functional lysosomes, thereby restoring the full complement of lysosomes in the cell – a process we identify in multiple animal species. Thus, an evolutionarily-conserved cycle in autophagy governs nutrient sensing and lysosome homeostasis during starvation.


Cell Death & Differentiation | 2009

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

Lorenzo Galluzzi; Stuart A. Aaronson; John M. Abrams; Emad S. Alnemri; David W. Andrews; Eric H. Baehrecke; Nicolas G. Bazan; Mikhail V. Blagosklonny; Klas Blomgren; Christoph Borner; Dale E. Bredesen; Catherine Brenner; Maria Castedo; John A. Cidlowski; Aaron Ciechanover; Gerald M. Cohen; V De Laurenzi; R De Maria; Mohanish Deshmukh; Brian David Dynlacht; Wafik S. El-Deiry; Richard A. Flavell; Simone Fulda; Carmen Garrido; Pierre Golstein; Marie Lise Gougeon; Douglas R. Green; Hinrich Gronemeyer; György Hajnóczky; J. M. Hardwick

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.


Cell | 2007

Growth Arrest and Autophagy Are Required for Salivary Gland Cell Degradation in Drosophila

Deborah L. Berry; Eric H. Baehrecke

Autophagy is a catabolic process that is negatively regulated by growth and has been implicated in cell death. We find that autophagy is induced following growth arrest and precedes developmental autophagic cell death of Drosophila salivary glands. Maintaining growth by expression of either activated Ras or positive regulators of the class I phosphoinositide 3-kinase (PI3K) pathway inhibits autophagy and blocks salivary gland cell degradation. Developmental degradation of salivary glands is also inhibited in autophagy gene (atg) mutants. Caspases are active in PI3K-expressing and atg mutant salivary glands, and combined inhibition of both autophagy and caspases increases suppression of gland degradation. Further, induction of autophagy is sufficient to induce premature cell death in a caspase-independent manner. Our results provide in vivo evidence that growth arrest, autophagy, and atg genes are required for physiological autophagic cell death and that multiple degradation pathways cooperate in the efficient clearance of cells during development.


The EMBO Journal | 2015

Autophagy in malignant transformation and cancer progression

Lorenzo Galluzzi; Federico Pietrocola; José Manuel Bravo-San Pedro; Ravi K. Amaravadi; Eric H. Baehrecke; Francesco Cecconi; Patrice Codogno; Jayanta Debnath; David A. Gewirtz; Vassiliki Karantza; Alec C. Kimmelman; Sharad Kumar; Beth Levine; Maria Chiara Maiuri; Seamus J. Martin; Josef M. Penninger; Mauro Piacentini; David C. Rubinsztein; Hans-Uwe Simon; Anne Simonsen; Andrew Thorburn; Guillermo Velasco; Kevin M. Ryan; Guido Kroemer

Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.


Nature Reviews Molecular Cell Biology | 2002

How death shapes life during development

Eric H. Baehrecke

The formation of an adult animal from a fertilized embryo involves the production and death of cells. Surprisingly, many cells are produced during development with an ultimate fate of death, and defects in programmed cell death can result in developmental abnormalities. Recent studies indicate that cells can die by many different mechanisms, and these differences have implications for proper animal development and disorders such as cancer and autoimmunity.


Autophagy | 2005

Does Autophagy Contribute to Cell Death

Jayanta Debnath; Eric H. Baehrecke; Guido Kroemer

Autophagy (specifically macroautophagy) is an evolutionarily conserved catabolic process where the cytoplasmic contents of a cell are sequestered within double membrane vacuoles, called autophagosomes, and subsequently delivered to the lysosome for degradation. Autophagy can function as a survival mechanism in starving cells. At the same time, extensive autophagy is commonly observed in dying cells, leading to its classification as an alternative form of programmed cell death. The functional contribution of autophagy to cell death has been a subject of great controversy. However, several recent loss-of-function studies of autophagy (Atg) genes have begun to address the roles of autophagy in both cell death and survival. Here, we review the emerging evidence in favor of and against autophagic cell death, discuss the possible roles that autophagic degradation might play in dying cells, and identify salient issues for future investigation.


Journal of Cell Biology | 2008

The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila

Gábor Juhász; Jahda H. Hill; Ying Yan; Miklós Sass; Eric H. Baehrecke; Jonathan M. Backer; Thomas P. Neufeld

Degradation of cytoplasmic components by autophagy requires the class III phosphatidylinositol 3 (PI(3))–kinase Vps34, but the mechanisms by which this kinase and its lipid product PI(3) phosphate (PI(3)P) promote autophagy are unclear. In mammalian cells, Vps34, with the proautophagic tumor suppressors Beclin1/Atg6, Bif-1, and UVRAG, forms a multiprotein complex that initiates autophagosome formation. Distinct Vps34 complexes also regulate endocytic processes that are critical for late-stage autophagosome-lysosome fusion. In contrast, Vps34 may also transduce activating nutrient signals to mammalian target of rapamycin (TOR), a negative regulator of autophagy. To determine potential in vivo functions of Vps34, we generated mutations in the single Drosophila melanogaster Vps34 orthologue, causing cell-autonomous disruption of autophagosome/autolysosome formation in larval fat body cells. Endocytosis is also disrupted in Vps34−/− animals, but we demonstrate that this does not account for their autophagy defect. Unexpectedly, TOR signaling is unaffected in Vps34 mutants, indicating that Vps34 does not act upstream of TOR in this system. Instead, we show that TOR/Atg1 signaling regulates the starvation-induced recruitment of PI(3)P to nascent autophagosomes. Our results suggest that Vps34 is regulated by TOR-dependent nutrient signals directly at sites of autophagosome formation.

Collaboration


Dive into the Eric H. Baehrecke's collaboration.

Top Co-Authors

Avatar

Bhupendra V. Shravage

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Christina K. McPhee

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Sharad Kumar

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Cheng Yu Lee

University of Maryland Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

Charles Nelson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Lenardo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rachel T. Simin

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Yu

Tsinghua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge