Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deborah L. Berry is active.

Publication


Featured researches published by Deborah L. Berry.


Nature | 2007

HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS

Udai Bhan Pandey; Zhiping Nie; Yakup Batlevi; Brett A. McCray; Gillian P. Ritson; Natalia B. Nedelsky; Stephanie Schwartz; Nicholas A. Diprospero; Melanie A. Knight; Oren Schuldiner; Ranjani Padmanabhan; Marc Hild; Deborah L. Berry; Dan Garza; Charlotte Hubbert; Tso-Pang Yao; Eric H. Baehrecke; J. Paul Taylor

A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway. The UPS and autophagy have long been viewed as complementary degradation systems with no point of intersection. This view has been challenged by two observations suggesting an apparent interaction: impairment of the UPS induces autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to neurodegeneration with ubiquitin-positive pathology. It is not known whether autophagy is strictly a parallel degradation system, or whether it is a compensatory degradation system when the UPS is impaired; furthermore, if there is a compensatory interaction between these systems, the molecular link is not known. Here we show that autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. We found that compensatory autophagy was induced in response to mutations affecting the proteasome and in response to UPS impairment in a fly model of the neurodegenerative disease spinobulbar muscular atrophy. Autophagy compensated for impaired UPS function in an HDAC6-dependent manner. Furthermore, expression of HDAC6 was sufficient to rescue degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner. This study suggests that impairment of autophagy (for example, associated with ageing or genetic variation) might predispose to neurodegeneration. Morover, these findings suggest that it may be possible to intervene in neurodegeneration by augmenting HDAC6 to enhance autophagy.


Cell | 2007

Growth Arrest and Autophagy Are Required for Salivary Gland Cell Degradation in Drosophila

Deborah L. Berry; Eric H. Baehrecke

Autophagy is a catabolic process that is negatively regulated by growth and has been implicated in cell death. We find that autophagy is induced following growth arrest and precedes developmental autophagic cell death of Drosophila salivary glands. Maintaining growth by expression of either activated Ras or positive regulators of the class I phosphoinositide 3-kinase (PI3K) pathway inhibits autophagy and blocks salivary gland cell degradation. Developmental degradation of salivary glands is also inhibited in autophagy gene (atg) mutants. Caspases are active in PI3K-expressing and atg mutant salivary glands, and combined inhibition of both autophagy and caspases increases suppression of gland degradation. Further, induction of autophagy is sufficient to induce premature cell death in a caspase-independent manner. Our results provide in vivo evidence that growth arrest, autophagy, and atg genes are required for physiological autophagic cell death and that multiple degradation pathways cooperate in the efficient clearance of cells during development.


Development | 2003

Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei

Alex Bortvin; Kevin Eggan; Helen Skaletsky; Hidenori Akutsu; Deborah L. Berry; Ryuzo Yanagimachi; David C. Page; Rudolf Jaenisch

The majority of cloned animals derived by nuclear transfer from somatic cell nuclei develop to the blastocyst stage but die after implantation. Mouse embryos that lack an Oct4 gene, which plays an essential role in control of developmental pluripotency, develop to the blastocyst stage and also die after implantation, because they lack pluripotent embryonic cells. Based on this similarity, we posited that cloned embryos derived from differentiated cell nuclei fail to establish a population of truly pluripotent embryonic cells because of faulty reactivation of key embryonic genes such as Oct4. To explore this hypothesis, we used an in silico approach to identify a set of Oct4-related genes whose developmental expression pattern is similar to that of Oct4. When expression of Oct4 and 10 Oct4-related genes was analyzed in individual cumulus cell-derived cloned blastocysts, only 62% correctly expressed all tested genes. In contrast to this incomplete reactivation of Oct4-related genes in somatic clones, ES cell-derived cloned blastocysts and normal control embryos expressed these genes normally. Notably, the contrast between expression patterns of the Oct4-related genes correlated with efficiency of embryonic development of somatic and ES cell-derived cloned blastocysts to term. These observations suggest that failure to reactivate the full spectrum of these Oct4-related genes may contribute to embryonic lethality in somatic-cell clones.


Current Biology | 2009

Autophagy, Not Apoptosis, Is Essential for Midgut Cell Death in Drosophila

Donna Denton; Bhupendra V. Shravage; Rachel T. Simin; Kathryn Mills; Deborah L. Berry; Eric H. Baehrecke; Sharad Kumar

Most developmentally programmed cell death in metazoans is mediated by caspases. During Drosophila metamorphosis, obsolete tissues, including the midgut and salivary glands, are removed by programmed cell death [1]. The initiator caspase Dronc and its activator Ark are required for the death of salivary glands, but not for midgut removal [2, 3]. In addition to caspases, complete removal of salivary glands requires autophagy [4]. However, the contribution of autophagy to midgut cell death has not been explored. Examination of combined mutants of the main initiator and effector caspases revealed that the canonical apoptotic pathway is not required for midgut cell death. Further analyses revealed that the caspase Decay is responsible for most of the caspase activity in dying midguts, yet inhibition of this activity has no effect on midgut removal. By contrast, midgut degradation was severely delayed by inhibition of autophagy, and this occurred without a decrease in caspase activity. Surprisingly, the combined inhibition of caspases and autophagy did not result in an additional delay in midgut removal. Together, our results indicate that autophagy, not caspases, is essential for midgut programmed cell death, providing the first in vivo evidence of caspase-independent programmed cell death that requires autophagy despite the presence of high caspase activity.


Development | 2006

The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process

Israel Muro; Deborah L. Berry; Jun R. Huh; Chun Hong Chen; Haixia Huang; Soon Ji Yoo; Ming Guo; Eric H. Baehrecke; Bruce A. Hay

Caspase family proteases play important roles in the regulation of apoptotic cell death. Initiator caspases are activated in response to death stimuli, and they transduce and amplify these signals by cleaving and thereby activating effector caspases. In Drosophila, the initiator caspase Nc (previously Dronc) cleaves and activates two short-prodomain caspases, Dcp-1 and Ice (previously Drice), suggesting these as candidate effectors of Nc killing activity. dcp-1-null mutants are healthy and possess few defects in normally occurring cell death. To explore roles for Ice in cell death, we generated and characterized an Ice null mutant. Animals lacking Ice show a number of defects in cell death, including those that occur during embryonic development, as well as during formation of adult eyes, arista and wings. Ice mutants exhibit subtle defects in the destruction of larval tissues, and do not prevent destruction of salivary glands during metamorphosis. Cells from Ice animals are also markedly resistant to several stresses, including X-irradiation and inhibition of protein synthesis. Mutations in Ice also suppress cell death that is induced by expression of Rpr, Wrinkled (previously Hid) and Grim. These observations demonstrate that Ice plays an important non-redundant role as a cell death effector. Finally, we demonstrate that Ice participates in, but is not absolutely required for, the non-apoptotic process of spermatid differentiation.


PLOS ONE | 2013

MicroRNA Profiling in Prostate Cancer - The Diagnostic Potential of Urinary miR-205 and miR-214

Anvesha Srivastava; Helle Goldberger; Alexander Dimtchev; Malathi Ramalinga; Juliet Chijioke; Catalin Marian; Eric K. Oermann; Sunghae Uhm; Joy S. Kim; Leonard N. Chen; Xin Li; Deborah L. Berry; Bhaskar Kallakury; Subhash C. Chauhan; Sean P. Collins; Simeng Suy; Deepak Kumar

Prostate cancer (PCa) is the most common type of cancer in men in the United States, which disproportionately affects African American descents. While metastasis is the most common cause of death among PCa patients, no specific markers have been assigned to severity and ethnic biasness of the disease. MicroRNAs represent a promising new class of biomarkers owing to their inherent stability and resilience. In the present study, we investigated potential miRNAs that can be used as biomarkers and/or therapeutic targets and can provide insight into the severity and ethnic biasness of PCa. PCR array was performed in FFPE PCa tissues (5 Caucasian American and 5 African American) and selected differentially expressed miRNAs were validated by qRT-PCR, in 40 (15 CA and 25 AA) paired PCa and adjacent normal tissues. Significantly deregulated miRNAs were also analyzed in urine samples to explore their potential as non-invasive biomarker for PCa. Out of 8 miRNAs selected for validation from PCR array data, miR-205 (p<0.0001), mir-214 (p<0.0001), miR-221(p<0.001) and miR-99b (p<0.0001) were significantly downregulated in PCa tissues. ROC curve shows that all four miRNAs successfully discriminated between PCa and adjacent normal tissues. MiR-99b showed significant down regulation (p<0.01) in AA PCa tissues as compared to CA PCa tissues and might be related to the aggressiveness associated with AA population. In urine, miR-205 (p<0.05) and miR-214 (p<0.05) were significantly downregulated in PCa patients and can discriminate PCa patients from healthy individuals with 89% sensitivity and 80% specificity. In conclusion, present study showed that miR-205 and miR-214 are downregulated in PCa and may serve as potential non-invasive molecular biomarker for PCa.


PLOS ONE | 2012

A New Mouse Model for the Study of Human Breast Cancer Metastasis

Elizabeth Iorns; Katherine Drews-Elger; Toby M. Ward; Sonja Dean; Jennifer Clarke; Deborah L. Berry; Dorraya El Ashry; Marc E. Lippman

Breast cancer is the most common cancer in women, and this prevalence has a major impact on health worldwide. Localized breast cancer has an excellent prognosis, with a 5-year relative survival rate of 85%. However, the survival rate drops to only 23% for women with distant metastases. To date, the study of breast cancer metastasis has been hampered by a lack of reliable metastatic models. Here we describe a novel in vivo model using human breast cancer xenografts in NOD scid gamma (NSG) mice; in this model human breast cancer cells reliably metastasize to distant organs from primary tumors grown within the mammary fat pad. This model enables the study of the entire metastatic process from the proper anatomical site, providing an important new approach to examine the mechanisms underlying breast cancer metastasis. We used this model to identify gene expression changes that occur at metastatic sites relative to the primary mammary fat pad tumor. By comparing multiple metastatic sites and independent cell lines, we have identified several gene expression changes that may be important for tumor growth at distant sites.


Hepatology | 2011

Transforming growth factor-β adaptor, β2-spectrin, modulates cyclin dependent kinase 4 to reduce development of hepatocellular cancer†

Hye Jung Baek; Michael J. Pishvaian; Yi Tang; Tae Hyun Kim; Shaoxian Yang; Majed El Zouhairi; Jon Mendelson; Kirti Shetty; Bhaskar Kallakury; Deborah L. Berry; Kyung Hwan Shin; Bibhuti Mishra; E. Premkumar Reddy; Sang Soo Kim; Lopa Mishra

Transforming growth factor beta (TGF‐β) is an important regulator of cell growth, and loss of TGF‐β signaling is a hallmark of carcinogenesis. The Smad3/4 adaptor protein β2‐spectrin (β2SP) is emerging as a potent regulator of tumorigenesis through its ability to modulate the tumor suppressor function of TGF‐β. However, to date the role of the TGF‐β signaling pathway at specific stages of the development of hepatocellular carcinoma (HCC), particularly in relation to the activation of other oncogenic pathways, remains poorly delineated. Here we identify a mechanism by which β2SP, a crucial Smad3 adaptor, modulates cyclin dependent kinase 4 (CDK4), cell cycle progression, and suppression of HCC. Increased expression of β2SP inhibits phosphorylation of the retinoblastoma gene product (Rb) and markedly reduces CDK4 expression to a far greater extent than other CDKs and cyclins. Furthermore, suppression of CDK4 by β2SP efficiently restores Rb hypophosphorylation and cell cycle arrest in G1. We further demonstrate that β2SP interacts with CDK4 and Smad3 in a competitive and TGF‐β‐dependent manner. In addition, haploinsufficiency of cdk4 in β2sp+/− mice results in a dramatic decline in HCC formation compared to that observed in β2sp+/− mice. Conclusion: β2SP deficiency leads to CDK4 activation and contributes to dysregulation of the cell cycle, cellular proliferation, oncogene overexpression, and the formation of HCCs. Our data highlight CDK4 as an attractive target for the pharmacologic inhibition of HCC and demonstrate the importance of β2sp+/− mice as a model of preclinical efficacy in the treatment of HCC. (HEPATOLOGY 2011;)


Journal of Innate Immunity | 2017

A Role for Neuronal Alpha-Synuclein in Gastrointestinal Immunity

Ethan D. Stolzenberg; Deborah L. Berry; De Yang; Ernest Y. Lee; Alexander Kroemer; Stuart S. Kaufman; Gerard C. L. Wong; Joost J. Oppenheim; Supti Sen; Thomas M. Fishbein; Ad Bax; Brent T. Harris; Denise Barbut; Michael Zasloff

Background: Alpha-synuclein (αS) is a nerve cell protein associated with Parkinson disease (PD). Accumulation of αS within the enteric nervous system (ENS) and its traffic from the gut to the brain are implicated in the pathogenesis and progression of PD. αS has no known function in humans and the reason for its accumulation within the ENS is unknown. Several recent studies conducted in rodents have linked αS to immune cell activation in the central nervous system. We hypothesized that αS in the ENS might play a role in the innate immune defenses of the human gastrointestinal (GI) tract. Methods: We immunostained endoscopic biopsies for αS from children with documented gastric and duodenal inflammation and intestinal allograft recipients who contracted norovirus. To determine whether αS exhibited immune-modulatory activity, we examined whether human αS induced leukocyte migration and dendritic cell maturation. Findings: We showed that the expression of αS in the enteric neurites of the upper GI tract of pediatric patients positively correlated with the degree of acute and chronic inflammation in the intestinal wall. In intestinal allograft subjects who were closely monitored for infection, expression of αS was induced during norovirus infection. We also demonstrated that both monomeric and oligomeric αS have potent chemoattractant activity, causing the migration of neutrophils and monocytes dependent on the presence of the integrin subunit, CD11b, and that both forms of αS stimulate dendritic cell maturation. Interpretation: These findings strongly suggest that αS is expressed within the human ENS to direct intestinal inflammation and implicates common GI infections in the pathogenesis of PD.


Breast Cancer Research and Treatment | 2014

Infiltrating S100A8+ myeloid cells promote metastatic spread of human breast cancer and predict poor clinical outcome

Katherine Drews-Elger; Elizabeth Iorns; Alexandra Dias; Philip Miller; Toby M. Ward; Sonja Dean; Jennifer Clarke; Adriana Campion-Flora; Daniel Nava Rodrigues; Jorge S. Reis-Filho; James M. Rae; Dafydd G. Thomas; Deborah L. Berry; Dorraya El-Ashry; Marc E. Lippman

The mechanisms by which breast cancer (BrC) can successfully metastasize are complex and not yet fully understood. Our goal was to identify tumor-induced stromal changes that influence metastatic cell behavior, and may serve as better targets for therapy. To identify stromal changes in cancer-bearing tissue, dual-species gene expression analysis was performed for three different metastatic BrC xenograft models. Results were confirmed by immunohistochemistry, flow cytometry, and protein knockdown. These results were validated in human clinical samples at the mRNA and protein level by retrospective analysis of cohorts of human BrC specimens. In pre-clinical models of BrC, systemic recruitment of S100A8+ myeloid cells—including myeloid-derived suppressor cells (MDSCs)—was promoted by tumor-derived factors. Recruitment of S100A8+ myeloid cells was diminished by inhibition of tumor-derived factors or depletion of MDSCs, resulting in fewer metastases and smaller primary tumors. Importantly, these MDSCs retain their ability to suppress T cell proliferation upon co-culture. Secretion of macrophage inhibitory factor (MIF) activated the recruitment of S100A8+ myeloid cells systemically. Inhibition of MIF, or depletion of MDSCs resulted in delayed tumor growth and lower metastatic burden. In human BrC specimens, increased mRNA and protein levels of S100A8+ infiltrating cells are highly associated with poor overall survival and shorter metastasis free survival of BrC patients, respectively. Furthermore, analysis of nine different human gene expression datasets confirms the association of increased levels of S100A8 transcripts with an increased risk of death. Recruitment of S100A8+ myeloid cells to primary tumors and secondary sites in xenograft models of BrC enhances cancer progression independent of their suppressive activity on T cells. In clinical samples, infiltrating S100A8+ cells are associated with poor overall survival. Targeting these molecules or associated pathways in cells of the tumor microenvironment may translate into novel therapeutic interventions and benefit patient outcome.

Collaboration


Dive into the Deborah L. Berry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina S. Kary

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Supti Sen

Georgetown University

View shared research outputs
Top Co-Authors

Avatar

Eric H. Baehrecke

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Fu

Georgetown University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge