Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Hahnen is active.

Publication


Featured researches published by Eric Hahnen.


American Journal of Human Genetics | 1999

Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling.

Brunhilde Wirth; M. Herz; Axel Wetter; S. Moskau; Eric Hahnen; Sabine Rudnik-Schöneborn; Thomas F. Wienker; Klaus Zerres

Problems with diagnosis and genetic counseling occur for patients with autosomal recessive proximal spinal muscular atrophy (SMA) who do not show the most common mutation: homozygous absence of at least exon 7 of the telomeric survival motor neuron gene (SMN1). Here we present molecular genetic data for 42 independent nondeleted SMA patients. A nonradioactive quantitative PCR test showed one SMN1 copy in 19 patients (45%). By sequencing cloned reverse-transcription (RT) PCR products or genomic fragments of SMN1, we identified nine different mutations in 18 of the 19 patients, six described for the first time: three missense mutations (Y272C, T274I, S262I), three frameshift mutations in exons 2a, 2b, and 4 (124insT, 241-242ins4, 591delA), one nonsense mutation in exon 1 (Q15X), one Alu-mediated deletion from intron 4 to intron 6, and one donor splice site mutation in intron 7 (c.922+6T-->G). The most frequent mutation, Y272C, was found in 6 (33%) of 18 patients. Each intragenic mutation found in at least two patients occurred on the same haplotype background, indicating founder mutations. Genotype-phenotype correlation allowed inference of the effect of each mutation on the function of the SMN1 protein and the role of the SMN2 copy number in modulating the SMA phenotype. In 14 of 23 SMA patients with two SMN1 copies, at least one intact SMN1 copy was sequenced, which excludes a 5q-SMA and suggests the existence of further gene(s) responsible for approximately 4%-5% of phenotypes indistinguishable from SMA. We determined the validity of the test, and we discuss its practical implications and limitations.


Human Molecular Genetics | 2010

SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy

Markus Riessland; Bastian Ackermann; Anja Förster; Miriam Jakubik; Jan Hauke; Lutz Garbes; Ina Fritzsche; Ylva Mende; Ingmar Blümcke; Eric Hahnen; Brunhilde Wirth

Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder determined by functional impairment of alpha-motor neurons within the spinal cord. SMA is caused by functional loss of the survival motor neuron gene 1 (SMN1), whereas disease severity is mainly influenced by the number of SMN2 copies. SMN2, which produces only low levels of full-length mRNA/protein, can be modulated by small molecules and drugs, thus offering a unique possibility for SMA therapy. Here, we analysed suberoylanilide hydroxamic acid (SAHA), a FDA-approved histone deacetylase inhibitor, as potential drug in two severe SMA mouse models each carrying two SMN2 transgenes: US-SMA mice with one SMN2 per allele (Smn(-/-);SMN2(tg/tg)) and Taiwanese-SMA mice with two SMN2 per allele (Smn(-/-);SMN2(tg/wt)), both on pure FVB/N background. The US-SMA mice were embryonically lethal with heterozygous males showing significantly reduced fertility. SAHA treatment of pregnant mothers rescued the embryonic lethality giving rise to SMA offspring. By using a novel breeding strategy for the Taiwanese model (Smn(-/-);SMN2(tg/tg) x Smn(-/+) mice), we obtained 50% SMA offspring that survive approximately 10 days and 50% control carriers in each litter. Treatment with 25 mg/kg twice daily SAHA increased lifespan of SMA mice by 30%, significantly improved motor function abilities, reduced degeneration of motor neurons within the spinal cord and increased the size of neuromuscular junctions and muscle fibers compared with vehicle-treated SMA mice. SMN RNA and protein levels were significantly elevated in various tissues including spinal cord and muscle. Hence, SAHA, which lessens the progression of SMA, might be suitable for SMA therapy.


Acta Neuropathologica | 2005

Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region.

Rolf Buslei; Michael Nolde; Bernd M. Hofmann; Stephan Meissner; Ilker Y. Eyüpoglu; Florian A. Siebzehnrubl; Eric Hahnen; Jürgen Kreutzer; Rudolf Fahlbusch

Dysregulation of the Wnt signalling pathway contributes to developmental abnormalities and carcinogenesis of solid tumours. Here, we examined β-catenin and adenomatous polyposis coli (APC) by mutational analysis in pituitary adenomas (n=60) and a large series of craniopharyngiomas (n=41). Furthermore, the expression pattern of β-catenin was immunohistochemically analysed in a cohort of tumours and cysts of the sellar region including pituitary adenomas (n=58), craniopharyngiomas (n=57), arachnoidal cysts (n=8), Rathke’s cleft cysts (n=10) and xanthogranulomas (n=6). Whereas APC mutations were not detectable in any tumour entity, β-catenin mutations were present in 77% of craniopharyngiomas, exclusively of the adamantinomatous subtype. All mutations affected exon 3, which encodes the degradation targeting box of β-catenin compatible with an accumulation of nuclear β-catenin protein. In addition, a novel 81-bp deletion of this exonic region was detected in one case. Immunohistochemical analysis confirmed a shift from membrane-bound to nuclear accumulation of β-catenin in 94% of the adamantinomatous tumours. Aberrant distribution patterns of β-catenin were never observed in the other tumour entities under study. We conclude that β-catenin mutations and/or nuclear accumulation serve as diagnostic hallmarks of the adamantinomatous variant, setting it apart from the papillary variant of craniopharyngioma.


Brain | 2010

Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans

Roland Coras; Florian A. Siebzehnrubl; Elisabeth Pauli; Hagen B. Huttner; Marleisje Njunting; Katja Kobow; Carmen Villmann; Eric Hahnen; Winfried Neuhuber; Daniel Weigel; Michael Buchfelder; Hermann Stefan; Heinz Beck; Dennis A. Steindler; Ingmar Blümcke

The hippocampal dentate gyrus maintains its capacity to generate new neurons throughout life. In animal models, hippocampal neurogenesis is increased by cognitive tasks, and experimental ablation of neurogenesis disrupts specific modalities of learning and memory. In humans, the impact of neurogenesis on cognition remains unclear. Here, we assessed the neurogenic potential in the human hippocampal dentate gyrus by isolating adult human neural stem cells from 23 surgical en bloc hippocampus resections. After proliferation of the progenitor cell pool in vitro we identified two distinct patterns. Adult human neural stem cells with a high proliferation capacity were obtained in 11 patients. Most of the cells in the high proliferation capacity cultures were capable of neuronal differentiation (53 ± 13% of in vitro cell population). A low proliferation capacity was observed in 12 specimens, and only few cells differentiated into neurons (4 ± 2%). This was reflected by reduced numbers of proliferating cells in vivo as well as granule cells immunoreactive for doublecortin, brain-derived neurotrophic factor and cyclin-dependent kinase 5 in the low proliferation capacity group. High and low proliferation capacity groups differed dramatically in declarative memory tasks. Patients with high proliferation capacity stem cells had a normal memory performance prior to epilepsy surgery, while patients with low proliferation capacity stem cells showed severe learning and memory impairment. Histopathological examination revealed a highly significant correlation between granule cell loss in the dentate gyrus and the same patients regenerative capacity in vitro (r = 0.813; P < 0.001; linear regression: R²(adjusted) = 0.635), as well as the same patients ability to store and recall new memories (r = 0.966; P = 0.001; linear regression: R²(adjusted) = 0.9). Our results suggest that encoding new memories is related to the regenerative capacity of the hippocampus in the human brain.


Expert Opinion on Investigational Drugs | 2008

Histone deacetylase inhibitors: possible implications for neurodegenerative disorders

Eric Hahnen; Jan Hauke; Christian Tränkle; Ilker Y. Eyüpoglu; Brunhilde Wirth; Ingmar Blümcke

During the past six years numerous studies identified histone deacetylase (HDAC) inhibitors as candidate drugs for the treatment of neurodegenerative disorders. Two major neuroprotective mechanisms of HDAC inhibitors have been identified, namely the transcriptional activation of disease-modifying genes and the correction of perturbations in histone acetylation homeostasis, which have been shown to be intimately involved in the neurodegenerative pathomechanisms of Huntingtons, Parkinsons and Kennedy disease, amyotropic lateral sclerosis, Rubinstein-Taybi syndrome as well as stroke. Based on the promising in vitro and in vivo analyses, clinical trials have been initiated to evaluate the safety and efficacy of HDAC inhibitors for the treatment of devastating diseases such as Huntingtons disease, amyotropic lateral sclerosis and spinal muscular atrophy. Here, the authors summarize and discuss the findings on the emerging field of epigenetic therapy strategies in neurodegenerative disorders.


Journal of Neurochemistry | 2006

In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy

Eric Hahnen; Ilker Y. Eyüpoglu; Lars Brichta; Kirsten Haastert; Christian Tränkle; Florian A. Siebzehnrubl; Markus Riessland; Irmgard Hölker; Peter Claus; Johann Romstöck; Rolf Buslei; Brunhilde Wirth; Ingmar Blümcke

Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non‐toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an α‐motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone‐rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m‐Carboxycinnamic acid bis‐Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS‐275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood–brain barrier, oral administration may allow deceleration of progressive α‐motoneurone degeneration by epigenetic SMN2 gene activation.


Journal of Neuropathology and Experimental Neurology | 2009

Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy.

Katja Kobow; Ina Jeske; Michelle Hildebrandt; Jan Hauke; Eric Hahnen; Rolf Buslei; Michael Buchfelder; Daniel Weigel; Hermann Stefan; Burkhard S. Kasper; Elisabeth Pauli; Ingmar Blümcke

Mesial temporal sclerosis (MTS) is the most common lesion in chronic, intractable temporal lobe epilepsies (TLE) and characterized by segmental neuronal cell loss in major hippocampal segments. Another histopathological hallmark includes granule cell dispersion (GCD), an architectural disturbance of the dentate gyrus encountered in approximately 50% of patients with mesial temporal sclerosis. Reelin, which plays a key role during hippocampal development and maintenance of laminar organization, is synthesized and released by Cajal-Retzius cells of the dentate molecular layer, and previous studies have shown that Reelin transcript levels are downregulated in human temporal lobe epilepsies specimens. To investigate whether epigenetic silencing by Reelin promoter methylation may be an underlying pathogenetic mechanism of GCD, DNA was harvested from 3 microdissected hippocampal subregions (i.e. molecular and granule cell layers of the dentate gyrus and presubiculum) from 8 MTS specimens with GCD, 5 TLE samples without GCD, and 3 autopsy controls. Promoter methylation was analyzed after bisulfite treatment, cloning, and direct sequencing; immunohistochemistry was performed to identify Cajal-Retzius cells. Reelin promoter methylation was found to be greater in TLE specimens than in controls; promoter methylation correlated with GCD among TLE specimens (p < 0.0002). No other clinical or histopathological parameter (i.e. sex, age, seizure duration, medication or extent, of MTS) correlated with promoter methylation. These data support a compromised Reelin-signaling pathway and identify promoter methylation as an epigenetic mechanism in the pathogenesis of TLE.


Journal of Neurochemistry | 2005

Suberoylanilide hydroxamic acid (SAHA) has potent anti-glioma properties in vitro, ex vivo and in vivo

Ilker Y. Eyüpoglu; Eric Hahnen; Rolf Buslei; Florian A. Siebzehnrubl; Nicolai E. Savaskan; Mike Lüders; Christian Tränkle; Wolfgang Wick; Michael Weller; Rudolf Fahlbusch; Ingmar Blümcke

Current treatment modalities for malignant gliomas do not allow long‐term survival. Here, we identify suberoylanilide hydroxamic acid (SAHA), an inhibitor of histone deacetylases (HDAC), as an effective experimental anti‐glioma agent. Administration of SAHA to various glioma cell lines obtained from human, rat and mouse inhibited tumour cell growth in a range of 1–10 μm. This anti‐glioma property is associated with up‐regulation of the cell cycle control protein p21/WAF, as well as the induction of apoptosis. A novel tumour invasion model using slice cultures of rat brain corroborated the anti‐glioma properties of SAHA in the organotypic brain environment. In this model, glioma invasion compromised adjacent brain parenchyma, and this tumour‐associated cytotoxicity could be inhibited by SAHA. In addition, a 10‐fold dose escalation experiment did not challenge the viability of cultured brain slices. In vivo, a single intratumoural injection of SAHA 7 days after orthotopic implantation of glioma cells in syngeneic rats doubled their survival time. These observations identify chromatin‐modifying enzymes as possible and promising targets for the pharmacotherapy of malignant gliomas.


Acta Neuropathologica | 2013

Deep sequencing reveals increased DNA methylation in chronic rat epilepsy

Katja Kobow; Anthony Kaspi; Kn Harikrishnan; Katharina Kiese; Mark Ziemann; Ishant Khurana; Ina Fritzsche; Jan Hauke; Eric Hahnen; Roland Coras; Angelika Mühlebner; Assam El-Osta; Ingmar Blümcke

Epilepsy is a frequent neurological disorder, although onset and progression of seizures remain difficult to predict in affected patients, irrespective of their epileptogenic condition. Previous studies in animal models as well as human epileptic brain tissue revealed a remarkably diverse pattern of gene expression implicating epigenetic changes to contribute to disease progression. Here we mapped for the first time global DNA methylation patterns in chronic epileptic rats and controls. Using methyl-CpG capture associated with massive parallel sequencing (Methyl-Seq) we report the genomic methylation signature of the chronic epileptic state. We observed a predominant increase, rather than loss of DNA methylation in chronic rat epilepsy. Aberrant methylation patterns were inversely correlated with gene expression changes using mRNA sequencing from same animals and tissue specimens. Administration of a ketogenic, high-fat, low-carbohydrate diet attenuated seizure progression and ameliorated DNA methylation mediated changes in gene expression. This is the first report of unsupervised clustering of an epigenetic mark being used in epilepsy research to separate epileptic from non-epileptic animals as well as from animals receiving anti-convulsive dietary treatment. We further discuss the potential impact of epigenetic changes as a pathogenic mechanism of epileptogenesis.


Human Molecular Genetics | 2009

Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition

Jan Hauke; Markus Riessland; Sebastian Lunke; Ilker Y. Eyüpoglu; Ingmar Blümcke; Assam El-Osta; Brunhilde Wirth; Eric Hahnen

Spinal muscular atrophy (SMA), a common neuromuscular disorder, is caused by homozygous absence of the survival motor neuron gene 1 (SMN1), while the disease severity is mainly influenced by the number of SMN2 gene copies. This correlation is not absolute, suggesting the existence of yet unknown factors modulating disease progression. We demonstrate that the SMN2 gene is subject to gene silencing by DNA methylation. SMN2 contains four CpG islands which present highly conserved methylation patterns and little interindividual variations in SMN1-deleted SMA patients. The comprehensive analysis of SMN2 methylation in patients suffering from severe versus mild SMA carrying identical SMN2 copy numbers revealed a correlation of CpG methylation at the positions −290 and −296 with the disease severity and the activity of the first transcriptional start site of SMN2 at position −296. These results provide first evidence that SMN2 alleles are functionally not equivalent due to differences in DNA methylation. We demonstrate that the methyl-CpG-binding protein 2, a transcriptional repressor, binds to the critical SMN2 promoter region in a methylation-dependent manner. However, inhibition of SMN2 gene silencing conferred by DNA methylation might represent a promising strategy for pharmacologic SMA therapy. We identified histone deacetylase (HDAC) inhibitors including vorinostat and romidepsin which are able to bypass SMN2 gene silencing by DNA methylation, while others such as valproic acid and phenylbutyrate do not, due to HDAC isoenzyme specificities. These findings indicate that DNA methylation is functionally important regarding SMA disease progression and pharmacological SMN2 gene activation which might have implications for future SMA therapy regimens.

Collaboration


Dive into the Eric Hahnen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Hauke

University of Cologne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingmar Blümcke

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ilker Y. Eyüpoglu

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolf Buslei

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge