Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guido Neidhardt is active.

Publication


Featured researches published by Guido Neidhardt.


JAMA Oncology | 2017

Germline Mutation Status, Pathological Complete Response, and Disease-Free Survival in Triple-Negative Breast Cancer: Secondary Analysis of the GeparSixto Randomized Clinical Trial

Eric Hahnen; Bianca Lederer; Jan Hauke; Sibylle Loibl; Sandra Kröber; Andreas Schneeweiss; Carsten Denkert; Peter A. Fasching; Jens Uwe Blohmer; Christian Jackisch; Stefan Paepke; Bernd Gerber; Sherko Kümmel; Christian Schem; Guido Neidhardt; Jens Huober; Kerstin Rhiem; Serban D. Costa; Janine Altmüller; Claus Hanusch; Holger Thiele; Volkmar Müller; Peter Nürnberg; Thomas Karn; Valentina Nekljudova; Michael Untch; Gunter von Minckwitz; Rita K. Schmutzler

Importance The GeparSixto trial provided evidence that the addition of neoadjuvant carboplatin to a regimen consisting of anthracycline, taxane, and bevacizumab increases pathological complete response (pCR) rates in patients with triple-negative breast cancer (TNBC). Whether BRCA1 and BRCA2 germline mutation status affects treatment outcome remains elusive. Objective To determine whether BRCA1 and BRCA2 germline mutation status affects therapy response in patients with TNBC. Design, Setting, and Participants This secondary analysis of a randomized clinical trial used archived DNA samples and cancer family history of 315 patients with TNBC enrolled between August 1, 2011, and December 31, 2012, in the GeparSixto trial. In all, 291 participants (92.4%) were included in this multicenter prospective investigation. DNA samples were analyzed for germline mutations in BRCA1, BRCA2, and 16 other cancer predisposition genes. The pCR rates between the carboplatin and noncarboplatin arms were compared. Genetic analyses were performed at the Center for Familial Breast and Ovarian Cancer in Cologne, Germany; data analysis, November 1 through December 31, 2015. Main Outcomes and Measures Proportion of patients who achieved pCR and disease-free survival after neoadjuvant treatment according to BRCA1 and BRCA2 germline mutation status. For pCR rates, the ypT0/is ypN0 definition was used as a primary end point. Results Of the 291 patients with TNBC, all were women; the mean (SD) age was 48 (11) years. The pCR rate in the carboplatin group was 56.8% (83 of 146) and 41.4% (60 of 145) in the noncarboplatin group (odds ratio [OR], 1.87; 95% CI, 1.17-2.97; P = .009). Pathogenic BRCA1 and BRCA2 germline mutations were present in 50 of the 291 patients (17.2%). In the noncarboplatin arm, the pCR rate was 66.7% (16 of 24) for patients with BRCA1 and BRCA2 mutations and 36.4% (44 of 121) for patients without (OR, 3.50; 95% CI, 1.39-8.84; P = .008). The high pCR rate observed in BRCA1 and BRCA2 mutation carriers (16 of 24 [66.7%]) was not increased further by adding carboplatin (17 of 26 [65.4%]). In contrast, carboplatin increased response rates in patients without BRCA1 and BRCA2 mutations: 66 of the 120 patients (55%) without BRCA1 and BRCA2 mutations achieved pCR in the carboplatin arm vs 44 of the 121 patients (36.4%) in the noncarboplatin arm (OR, 2.14; 95% CI, 1.28-3.58; P = .004). Patients without pathogenic BRCA1 and BRCA2 alterations showed elevated disease-free survival rates when carboplatin was added (without carboplatin, 73.5%; 95% CI, 64.1%-80.8% vs with carboplatin, 85.3%; 95% CI, 77.0%-90.8%; hazard ratio, 0.53; 95% CI, 0.29-0.96; P = .04). Conclusions and Relevance Under the nonstandard GeparSixto polychemotherapy regimen, patients without BRCA1 and BRCA2 germline mutations benefited from the addition of carboplatin and those with BRCA1 and BRCA2 mutations showed superior response rates without additive effects observed for carboplatin. Trial Registration clinicaltrials.gov Identifier: NCT01426880


Breast Cancer Research | 2013

RAD51C deletion screening identifies a recurrent gross deletion in breast cancer and ovarian cancer families

Gioia Schnurbein; Jan Hauke; Barbara Wappenschmidt; Nana Weber-Lassalle; Stefanie Engert; Heide Hellebrand; Lutz Garbes; Alexandra Becker; Guido Neidhardt; Kerstin Rhiem; Alfons Meindl; Rita K. Schmutzler; Eric Hahnen

RAD51C is an integral part of the DNA double-strand repair through homologous recombination, and monoallelic mutations were found in ~1.3% of BRCA1/2-negative breast cancer (BC) and/or ovarian cancer (OC) families. Several studies confirmed the occurrence of RAD51C mutations predominantly in BC and/or OC families, although with varying frequencies, clearly establishing RAD51C as a cancer-predisposing gene. There is ongoing debate whether pathogenic RAD51C alterations increase the relative risk for BC in addition to that for OC, which was estimated to be 5.88 (95% confidence interval = 2.91 to 11.88; P = 7.65 × 10(-7)).


JAMA Oncology | 2017

Association Between Loss-of-Function Mutations Within the FANCM Gene and Early-Onset Familial Breast Cancer

Guido Neidhardt; Jan Hauke; Juliane Ramser; Eva Groß; Andrea Gehrig; Clemens R. Müller; Anne-Karin Kahlert; Karl Hackmann; Ellen Honisch; Dieter Niederacher; Stefanie Heilmann-Heimbach; Andre Franke; Wolfgang Lieb; Holger Thiele; Janine Altmüller; Peter Nürnberg; Kristina Klaschik; Corinna Ernst; Nina Ditsch; Frank Jessen; Alfredo Ramirez; Barbara Wappenschmidt; Christoph Engel; Kerstin Rhiem; Alfons Meindl; Rita K. Schmutzler; Eric Hahnen

Importance Germline mutations in established moderately or highly penetrant risk genes for breast cancer (BC) and/or ovarian cancer (OC), including BRCA1 and BRCA2, explain fewer than half of all familial BC and/or OC cases. Based on the genotyping of 2 loss-of-function (LoF) variants c.5101C>T (p.GIn1701Ter [rs147021911]) and c.5791C>T (p.Arg1931Ter [rs144567652]), the FANCM gene has been suggested as a novel BC predisposition gene, while the analysis of the entire coding region of the FANCM gene in familial index cases and geographically matched controls is pending. Objectives To assess the mutational spectrum within the FANCM gene, and to determine a potential association of LoF germline mutations within the FANCM gene with BC and/or OC risk. Design, Setting, and Participants For the purpose of identification and characterization of novel BC and/or OC predisposition genes, a total of 2047 well-characterized familial BC index cases, 628 OC cases, and 2187 geographically matched controls were screened for LoF mutations within the FANCM gene by next-generation sequencing. All patients previously tested negative for pathogenic BRCA1 and BRCA2 mutations. All data collection occurred between June 1, 2013, and April 30, 2016. Data analysis was performed from May 1, 2016, to July 1, 2016. Main Outcomes and Measures FANCM LoF mutation frequencies in patients with BC and/or OC were compared with the FANCM LoF mutation frequencies in geographically matched controls by univariate logistic regression. Positive associations were stratified by age at onset and cancer family history. Results In this case-control study, 2047 well-characterized familial female BC index cases, 628 OC cases, and 2187 geographically matched controls were screened for truncating FANCM alterations. Heterozygous LoF mutations within the FANCM gene were significantly associated with familial BC risk, with an overall odds ratio (OR) of 2.05 (95% CI, 0.94-4.54; P = .049) and a mutation frequency of 1.03% in index cases. In familial patients whose BC onset was before age 51 years, an elevated OR of 2.44 (95% CI, 1.08-5.59; P = .02) was observed. A more pronounced association was identified for patients with a triple-negative BC tumor phenotype (OR, 3.75; 95% CI, 1.00-12.85; P = .02). No significant association was detected for unselected OC cases (OR, 1.74; 95% CI, 0.57-5.08; P = .27). Conclusions and Relevance Based on the significant associations of heterozygous LoF mutations with early-onset or triple-negative BC, FANCM should be included in diagnostic gene panel testing for individual risk assessment. Larger studies are required to determine age-dependent disease risks for BC and to assess a potential role of FANCM mutations in OC pathogenesis.


Breast Care | 2017

Germline Mutations in Triple-Negative Breast Cancer

Eric Hahnen; Jan Hauke; Christoph Engel; Guido Neidhardt; Kerstin Rhiem; Rita K. Schmutzler

Triple-negative breast cancer (TNBC) is associated with a poor prognosis and defines a subgroup of patients who do not benefit from endocrine or anti-HER2 therapy. Rather than being a biological entity, TNBC represents a heterogeneous disease, and further subtyping is necessary to establish targeted therapies. Germline mutational status may serve as a robust biomarker predicting therapy response, especially with respect to compounds challenging the DNA repair machinery. Patients with TNBC usually show an early onset of the disease, as well as a positive family history of breast and/or ovarian cancer in more than one third of all cases, which suggests that TNBC is closely associated with a hereditary disease cause. In unselected TNBC cases, the prevalence of pathogenic germline BRCA1/2 mutations is approximately twice as high as in breast cancer overall. Early age at diagnosis and positive family history are strong predictors for an increased BRCA1/2 mutation probability, which is up to 40% when both risk factors are considered. Apart from BRCA1/2, the rarely mutated breast cancer predisposition genes PALB2 and FANCM have been associated with TNBC. This review summarizes the role of germline mutational status in TNBC pathogenesis. Clinical trials addressing BRCA1/2 mutation carriers are discussed.


PLOS ONE | 2017

Prevalence of deleterious germline variants in risk genes including BRCA1/2 in consecutive ovarian cancer patients (AGO-TR-1)

Philipp Harter; Jan Hauke; Florian Heitz; Alexander Reuss; Stefan Kommoss; Frederik Marme; André Heimbach; Katharina Prieske; Lisa Richters; Alexander Burges; Guido Neidhardt; Nikolaus de Gregorio; Ahmed El-Balat; Felix Hilpert; Werner Meier; Rainer Kimmig; Karin Kast; Jalid Sehouli; Klaus H. Baumann; Christian Jackisch; Tjoung-Won Park-Simon; Lars Hanker; Sandra Kröber; Jacobus Pfisterer; Heidrun Gevensleben; Andreas Schnelzer; Dimo Dietrich; Tanja Neunhöffer; Mathias Krockenberger; Sara Y. Brucker

Background Identification of families at risk for ovarian cancer offers the opportunity to consider prophylactic surgery thus reducing ovarian cancer mortality. So far, identification of potentially affected families in Germany was solely performed via family history and numbers of affected family members with breast or ovarian cancer. However, neither the prevalence of deleterious variants in BRCA1/2 in ovarian cancer in Germany nor the reliability of family history as trigger for genetic counselling has ever been evaluated. Methods Prospective counseling and germline testing of consecutive patients with primary diagnosis or with platinum-sensitive relapse of an invasive epithelial ovarian cancer. Testing included 25 candidate and established risk genes. Among these 25 genes, 16 genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, NBN, PMS2, PTEN, PALB2, RAD51C, RAD51D, STK11, TP53) were defined as established cancer risk genes. A positive family history was defined as at least one relative with breast cancer or ovarian cancer or breast cancer in personal history. Results In total, we analyzed 523 patients: 281 patients with primary diagnosis of ovarian cancer and 242 patients with relapsed disease. Median age at primary diagnosis was 58 years (range 16–93) and 406 patients (77.6%) had a high-grade serous ovarian cancer. In total, 27.9% of the patients showed at least one deleterious variant in all 25 investigated genes and 26.4% in the defined 16 risk genes. Deleterious variants were most prevalent in the BRCA1 (15.5%), BRCA2 (5.5%), RAD51C (2.5%) and PALB2 (1.1%) genes. The prevalence of deleterious variants did not differ significantly between patients at primary diagnosis and relapse. The prevalence of deleterious variants in BRCA1/2 (and in all 16 risk genes) in patients <60 years was 30.2% (33.2%) versus 10.6% (18.9%) in patients ≥60 years. Family history was positive in 43% of all patients. Patients with a positive family history had a prevalence of deleterious variants of 31.6% (36.0%) versus 11.4% (17.6%) and histologic subtype of high grade serous ovarian cancer versus other showed a prevalence of deleterious variants of 23.2% (29.1%) and 10.2% (14.8%), respectively. Testing only for BRCA1/2 would miss in our series more than 5% of the patients with a deleterious variant in established risk genes. Conclusions 26.4% of all patients harbor at least one deleterious variant in established risk genes. The threshold of 10% mutation rate which is accepted for reimbursement by health care providers in Germany was observed in all subgroups analyzed and neither age at primary diagnosis nor histo-type or family history sufficiently enough could identify a subgroup not eligible for genetic counselling and testing. Genetic testing should therefore be offered to every patient with invasive epithelial ovarian cancer and limiting testing to BRCA1/2 seems to be not sufficient.


Genetics in Medicine | 2017

Individuals with FANCM biallelic mutations do not develop Fanconi anemia, but show risk for breast cancer, chemotherapy toxicity and may display chromosome fragility

Irene Catucci; Ana Osorio; Brita Arver; Guido Neidhardt; Massimo Bogliolo; Federica Zanardi; Mirko Riboni; Simone Minardi; Roser Pujol; Jacopo Azzollini; Bernard Peissel; Siranoush Manoukian; Giovanna De Vecchi; Stefano Casola; Jan Hauke; Lisa Richters; Kerstin Rhiem; Rita K. Schmutzler; Karin Wallander; Therese Törngren; Åke Borg; Paolo Radice; Jordi Surrallés; Eric Hahnen; Hans Ehrencrona; Anders Kvist; Javier Benitez; Paolo Peterlongo

PurposeMonoallelic germ-line mutations in the BRCA1/FANCS, BRCA2/FANCD1 and PALB2/FANCN genes confer high risk of breast cancer. Biallelic mutations in these genes cause Fanconi anemia (FA), characterized by malformations, bone marrow failure, chromosome fragility, and cancer predisposition (BRCA2/FANCD1 and PALB2/FANCN), or an FA-like disease presenting a phenotype similar to FA but without bone marrow failure (BRCA1/FANCS). FANCM monoallelic mutations have been reported as moderate risk factors for breast cancer, but there are no reports of any clinical phenotype observed in carriers of biallelic mutations.MethodsBreast cancer probands were subjected to mutation analysis by sequencing gene panels or testing DNA damage response genes.ResultsFive cases homozygous for FANCM loss-of-function mutations were identified. They show a heterogeneous phenotype including cancer predisposition, toxicity to chemotherapy, early menopause, and possibly chromosome fragility. Phenotype severity might correlate with mutation position in the gene.ConclusionOur data indicate that biallelic FANCM mutations do not cause classical FA, providing proof that FANCM is not a canonical FA gene. Moreover, our observations support previous findings suggesting that FANCM is a breast cancer-predisposing gene. Mutation testing of FANCM might be considered for individuals with the above-described clinical features.


Breast Cancer Research | 2018

BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer

Nana Weber-Lassalle; Jan Hauke; Juliane Ramser; Lisa Richters; Eva Groß; Britta Blümcke; Andrea Gehrig; Anne-Karin Kahlert; Clemens R. Müller; Karl Hackmann; Ellen Honisch; Konstantin Weber-Lassalle; Dieter Niederacher; Julika Borde; Holger Thiele; Corinna Ernst; Janine Altmüller; Guido Neidhardt; Peter Nürnberg; Kristina Klaschik; Christopher Schroeder; Konrad Platzer; A. Volk; Shan Wang-Gohrke; Walter Just; Bernd Auber; Christian Kubisch; Gunnar Schmidt; Judit Horvath; Barbara Wappenschmidt

BackgroundGermline mutations in the BRIP1 gene have been described as conferring a moderate risk for ovarian cancer (OC), while the role of BRIP1 in breast cancer (BC) pathogenesis remains controversial.MethodsTo assess the role of deleterious BRIP1 germline mutations in BC/OC predisposition, 6341 well-characterized index patients with BC, 706 index patients with OC, and 2189 geographically matched female controls were screened for loss-of-function (LoF) mutations and potentially damaging missense variants. All index patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germline testing and tested negative for pathogenic BRCA1/2 variants.ResultsBRIP1 LoF mutations confer a high OC risk in familial index patients (odds ratio (OR) = 20.97, 95% confidence interval (CI) = 12.02–36.57, P < 0.0001) and in the subgroup of index patients with late-onset OC (OR = 29.91, 95% CI = 14.99–59.66, P < 0.0001). No significant association of BRIP1 LoF mutations with familial BC was observed (OR = 1.81 95% CI = 1.00–3.30, P = 0.0623). In the subgroup of familial BC index patients without a family history of OC there was also no apparent association (OR = 1.42, 95% CI = 0.70–2.90, P = 0.3030). In 1027 familial BC index patients with a family history of OC, the BRIP1 mutation prevalence was significantly higher than that observed in controls (OR = 3.59, 95% CI = 1.43–9.01; P = 0.0168). Based on the negative association between BRIP1 LoF mutations and familial BC in the absence of an OC family history, we conclude that the elevated mutation prevalence in the latter cohort was driven by the occurrence of OC in these families. Compared with controls, predicted damaging rare missense variants were significantly more prevalent in OC (P = 0.0014) but not in BC (P = 0.0693) patients.ConclusionsTo avoid ambiguous results, studies aimed at assessing the impact of candidate predisposition gene mutations on BC risk might differentiate between BC index patients with an OC family history and those without. In familial cases, we suggest that BRIP1 is a high-risk gene for late-onset OC but not a BC predisposition gene, though minor effects cannot be excluded.


Geburtshilfe Und Frauenheilkunde | 2016

Incidence of germline mutations in risk genes including BRCA1/2 in consecutive ovarian cancer (OC) patients (AGO TR-1)

Stefan Kommoss; P. Harter; Jan Hauke; Florian Heitz; Alexander Reuss; F Marmé; André Heimbach; Katharina Prieske; Lisa Richters; Alexander Burges; Guido Neidhardt; N de Gregorio; Ahmed El-Balat; Felix Hilpert; Werner Meier; Martin Heubner; Karin Kast; Ioana Braicu; Eric Hahnen; Rita K. Schmutzler


Journal of Clinical Oncology | 2016

Incidence of germline mutations in risk genes including BRCA1/2 in consecutive ovarian cancer (OC) patients (AGO TR-1).

Philipp Harter; Jan Hauke; Florian Heitz; Alexander Reuss; Stefan Kommoss; Frederik Marme; Andre Heimbach; Katharina Prieske; Lisa Richters; Alexander Burges; Guido Neidhardt; Nikolaus de Gregorio; Ahmed El-Balat; Felix Hilpert; Werner Meier; Martin Heubner; Karin Kast; Ioana Braicu; Eric Hahnen; Rita K. Schmutzler


Journal of Clinical Oncology | 2016

Next-generation sequencing in BRCA1/2-negative breast and ovarian cancer families.

Jan Hauke; Andre Heimbach; Lisa Richters; Sandra Kroeber; Janine Altmüller; Holger Thiele; Peter Nuernberg; Barbara Wappenschmidt; Guido Neidhardt; Kerstin Rhiem; Rita K. Schmutzler; Eric Hahnen

Collaboration


Dive into the Guido Neidhardt's collaboration.

Top Co-Authors

Avatar

Jan Hauke

University of Cologne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed El-Balat

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge