Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Hostetler is active.

Publication


Featured researches published by Eric Hostetler.


Journal of Pharmacology and Experimental Therapeutics | 2013

In Vivo Quantification of Calcitonin Gene-Related Peptide Receptor Occupancy by Telcagepant in Rhesus Monkey and Human Brain Using the Positron Emission Tomography Tracer [11C]MK-4232

Eric Hostetler; Aniket Joshi; Sandra M. Sanabria-Bohórquez; Hong Fan; Zhizhen Zeng; Mona Purcell; Liza Gantert; Kerry Riffel; Mangay Williams; Stacey O'Malley; Patricia Miller; Harold G. Selnick; Steven N. Gallicchio; Ian M. Bell; Christopher A. Salvatore; Stefanie A. Kane; Chi-Chung Li; Richard Hargreaves; Tjibbe de Groot; Guy Bormans; Anne Van Hecken; Inge Derdelinckx; Jan de Hoon; Tom Reynders; Ruben Declercq; Inge De Lepeleire; W Dexter Kennedy; Rebecca Blanchard; Eugene E. Marcantonio; Cyrille Sur

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide whose agonist interaction with the CGRP receptor (CGRP-R) in the periphery promotes vasodilation, neurogenic inflammation and trigeminovascular sensory activation. This process is implicated in the cause of migraine headaches, and CGRP-R antagonists in clinical development have proven effective in treating migraine-related pain in humans. CGRP-R is expressed on blood vessel smooth muscle and sensory trigeminal neurons and fibers in the periphery as well as in the central nervous system. However, it is not clear what role the inhibition of central CGRP-R plays in migraine pain relief. To this end, the CGRP-R positron emission tomography (PET) tracer [11C]MK-4232 (2-[(8R)-8-(3,5-difluorophenyl)-6,8-[6-11C]dimethyl-10-oxo-6,9-diazaspiro[4.5]decan-9-yl]-N-[(2R)-2′-oxospiro[1,3-dihydroindene-2,3′-1H-pyrrolo[2,3-b]pyridine]-5-yl]acetamide) was discovered and developed for use in clinical PET studies. In rhesus monkeys and humans, [11C]MK-4232 displayed rapid brain uptake and a regional brain distribution consistent with the known distribution of CGRP-R. Monkey PET studies with [11C]MK-4232 after intravenous dosing with CGRP-R antagonists validated the ability of [11C]MK-4232 to detect changes in CGRP-R occupancy in proportion to drug plasma concentration. Application of [11C]MK-4232 in human PET studies revealed that telcagepant achieved only low receptor occupancy at an efficacious dose (140 mg PO). Therefore, it is unlikely that antagonism of central CGRP-R is required for migraine efficacy. However, it is not known whether high central CGRP-R antagonism may provide additional therapeutic benefit.


The Journal of Nuclear Medicine | 2012

Biodistribution and Radiation Dosimetry of the Integrin Marker 18F-RGD-K5 Determined from Whole-Body PET/CT in Monkeys and Humans

Mohan Doss; Hartmuth C. Kolb; James Zhang; Marie-José Bélanger; James B. Stubbs; Michael G. Stabin; Eric Hostetler; R. Katherine Alpaugh; Margaret von Mehren; Joseph C. Walsh; Michael S. Haka; Vani P. Mocharla; Jian Q. Yu

2-((2S,5R,8S,11S)-5-benzyl-8-(4-((2S,3R,4R,5R,6S)-6-((2-(4-(3-18F-fluoropropyl)-1H-1,2,3-triazol-1-yl)acetamido)methyl)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxamido)butyl)-11-(3-guanidinopropyl)-3,6,9,12,15-pentaoxo-1,4,7,10,13-pentaazacyclopentadecan-2-yl)acetic acid (18F-RGD-K5) has been developed as an αvβ3 integrin marker for PET. The purpose of this study was to determine the biodistribution and estimate the radiation dose from 18F-RGD-K5 using whole-body PET/CT scans in monkeys and humans. Methods: Successive whole-body PET/CT scans were obtained after intravenous injection of 18F-RGD-K5 in 3 rhesus monkeys (167 ± 19 MBq) and 4 healthy humans (583 ± 78 MBq). In humans, blood samples were collected between the PET/CT scans, and stability of 18F-RGD-K5 was assessed. Urine was also collected between the scans, to determine the total activity excreted in urine. The PET scans were analyzed to determine the radiotracer uptake in different organs. OLINDA/EXM software was used to calculate human radiation doses based on human and monkey biodistributions. Results: 18F-RGD-K5 was metabolically stable in human blood up to 90 min after injection, and it cleared rapidly from the blood pool, with a 12-min half-time. For both monkeys and humans, increased 18F-RGD-K5 uptake was observed in the kidneys, bladder, liver, and gallbladder, with mean standardized uptake values at 1 h after injection for humans being approximately 20, 50, 4, and 10, respectively. For human biodistribution data, the calculated effective dose was 31 ± 1 μSv/MBq, and the urinary bladder wall had the highest absorbed dose at 376 ± 19 μGy/MBq using the 4.8-h bladder-voiding model. With the 1-h voiding model, these doses reduced to 15 ± 1 μSv/MBq for the effective dose and 103 ± 4 μGy/MBq for the absorbed dose in the urinary bladder wall. For a typical injected activity of 555 MBq, the effective dose would be 17.2 ± 0.6 mSv for the 4.8-h model, reducing to 8.3 ± 0.4 mSv for the 1-h model. For monkey biodistribution data, the effective dose to humans would be 22.2 ± 2.4 mSv for the 4.8-h model and 12.8 ± 0.2 mSv for the 1-h model. Conclusion: The biodistribution profile of 18F-RGD-K5 in monkeys and humans was similar, with increased uptake in the bladder, liver, and kidneys. There was rapid clearance of 18F-RGD-K5 through the renal system. The urinary bladder wall received the highest radiation dose and was deemed the critical organ. Both whole-body effective dose and bladder dose can be reduced by more frequent voiding. 18F-RGD-K5 can be used safely for imaging αvβ3 integrin expression in humans.


Nuclear Medicine and Biology | 2002

A remote-controlled high pressure reactor for radiotracer synthesis with [11C]carbon monoxide.

Eric Hostetler; H. Donald Burns

[11C]Carbon monoxide is a versatile building block for the synthesis of PET radiotracers. However, the difficulty of trapping [11C]CO in a small solvent volume has limited its utility. We wish to report the details of a simple, remotely operated High Pressure Reactor (HiPR) system for trapping and reacting practical quantities of [11C]CO. All parts used in the HiPR are commercially available, providing an inexpensive and easily assembled system. A number of compounds have been synthesized using the HiPR via palladium mediated reactions with [11C]CO, an aryl halide, and a nucleophile dissolved in dioxane. For example, AMPA receptor modulator [11C]CX546 was synthesized from its respective precursors in 37% isolated yield, uncorrected from trapped [11C]CO.


The Journal of Nuclear Medicine | 2016

Preclinical Characterization of 18F-MK-6240, a Promising PET Tracer for In Vivo Quantification of Human Neurofibrillary Tangles

Eric Hostetler; Abbas M. Walji; Zhizhen Zeng; Patricia Miller; Idriss Bennacef; Cristian Salinas; Brett Connolly; Liza Gantert; Hyking Haley; Marie Holahan; Mona Purcell; Kerry Riffel; Talakad Lohith; Paul J. Coleman; Aileen Soriano; Aimie M. Ogawa; Serena Xu; Xiaoping Zhang; Elizabeth M. Joshi; Joseph Della Rocca; David Hesk; David J. Schenk; Jeffrey L. Evelhoch

A PET tracer is desired to help guide the discovery and development of disease-modifying therapeutics for neurodegenerative diseases characterized by neurofibrillary tangles (NFTs), the predominant tau pathology in Alzheimer disease (AD). We describe the preclinical characterization of the NFT PET tracer 18F-MK-6240. Methods: In vitro binding studies were conducted with 3H-MK-6240 in tissue slices and homogenates from cognitively normal and AD human brain donors to evaluate tracer affinity and selectivity for NFTs. Immunohistochemistry for phosphorylated tau was performed on human brain slices for comparison with 3H-MK-6240 binding patterns on adjacent brain slices. PET studies were performed with 18F-MK-6240 in monkeys to evaluate tracer kinetics and distribution in the brain. 18F-MK-6240 monkey PET studies were conducted after dosing with unlabeled MK-6240 to evaluate tracer binding selectivity in vivo. Results: The 3H-MK-6240 binding pattern was consistent with the distribution of phosphorylated tau in human AD brain slices. 3H-MK-6240 bound with high affinity to human AD brain cortex homogenates containing abundant NFTs but bound poorly to amyloid plaque–rich, NFT-poor AD brain homogenates. 3H-MK-6240 showed no displaceable binding in the subcortical regions of human AD brain slices and in the hippocampus/entorhinal cortex of non-AD human brain homogenates. In monkey PET studies, 18F-MK-6240 displayed rapid and homogeneous distribution in the brain. The 18F-MK-6240 volume of distribution stabilized rapidly, indicating favorable tracer kinetics. No displaceable binding was observed in self-block studies in rhesus monkeys, which do not natively express NFTs. Moderate defluorination was observed as skull uptake. Conclusion: 18F-MK-6240 is a promising PET tracer for the in vivo quantification of NFTs in AD patients.


Molecular Imaging and Biology | 2012

Ex Vivo Imaging of Pancreatic Beta Cells using a Radiolabeled GLP-1 Receptor Agonist

Brett Connolly; Amy Vanko; Paul McQuade; Ilonka Guenther; Xiangjun Meng; Daniel Rubins; Rikki Waterhouse; Richard Hargreaves; Cyrille Sur; Eric Hostetler

PurposeThe purpose of this study was to evaluate the binding specificity of the radiolabeled glucagon-like peptide 1 receptor (GLP-1R) agonist (Lys40(DOTA)NH2)Exendin-4 in the pancreas using a combination of ex vivo autoradiography and immunohistochemistry.ProceduresSprague–Dawley rats were administered [64Cu](Lys40(DOTA)NH2)Exendin-4 i.v. with or without unlabeled Exendin (9-39) to determine binding specificity. Similar experiments were performed using Zucker diabetic fatty (ZDF) and Zucker lean (ZLC) rats. Animals were euthanized and the pancreas was extracted, immediately frozen, and sectioned. The sections were apposed to phosphor imaging plates, scanned, and immunostained for insulin.ResultsCo-registration of the autoradiographic and immunohistochemical images revealed that [64Cu] (Lys40(DOTA)NH2)Exendin-4 specific binding was restricted to islet cells. This binding was blocked by the co-administration of Exendin(9-39) indicating that the radiotracer uptake is mediated by GLP-1R. Uptake of [64Cu](Lys40(DOTA)NH2)Exendin-4 was greatly decreased in the pancreas of ZDF rats.ConclusionsEx vivo autoradiography results using [64Cu](Lys40(DOTA)NH2)Exendin-4 suggest that GLP-1R agonists based on Exendin-4 are attractive PET ligands for the in vivo determination of β-cell mass.


Synapse | 2011

Synthesis, characterization, and monkey PET studies of [18F]MK-1312, a PET tracer for quantification of mGluR1 receptor occupancy by MK-5435

Eric Hostetler; Wai-si Eng; Aniket D. Joshi; Sandra M. Sanabria-Bohórquez; Hiroshi Kawamoto; Satoru Ito; Stacey O'Malley; Stephen Krause; Christine Ryan; Shil Patel; Mangay Williams; Kerry Riffel; Gentaroh Suzuki; Satoshi Ozaki; Hisashi Ohta; Jacquelynn J. Cook; H. Donald Burns; Richard Hargreaves

Two moderately lipophilic, high affinity ligands for metabotropic glutamate receptor subtype 1 (mGluR1) were radiolabeled with a positron‐emitting radioisotope and evaluated in rhesus monkey as potential PET tracers. Both ligands were radiolabeled with fluorine‐18 via nucleophilic displacement of the corresponding 2‐chloropyridine precursor with [18F]potassium fluoride. [18F]MK‐1312 was found to have a suitable signal for quantification of mGluR1 receptors in nonhuman primates and was more thoroughly characterized. In vitro autoradiographic studies with [18F]MK‐1312 in rhesus monkey and human brain tissue slices revealed an uptake distribution consistent with the known distribution of mGluR1, with the highest uptake in the cerebellum, moderate uptake in the hippocampus, thalamus, and cortical regions, and lowest uptake in the caudate and putamen. In vitro saturation binding studies in rhesus monkey and human cerebellum homogenates confirmed that [18F]MK‐1312 binds to a single site with a Bmax/Kd ratio of 132 and 98, respectively. PET studies in rhesus monkey with [18F]MK‐1312 showed high brain uptake and a regional distribution consistent with in vitro autoradiography results. Blockade of [18F]MK‐1312 uptake with mGluR1 allosteric antagonist MK‐5435 dose‐dependently reduced tracer uptake in all regions of gray matter to a similarly low level of tracer uptake. This revealed a large specific signal useful for determination of mGluR1 receptor occupancy in rhesus monkey. Taken together, these results are promising for clinical PET studies with [18F]MK‐1312 to determine mGluR1 occupancy of MK‐5435. Synapse 2011.


Journal of Pharmacology and Experimental Therapeutics | 2009

In vitro and in vivo properties of 3-tert-butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)-pyrazolo[1,5-d]-[1,2,4]triazine (MRK-016), a GABAA receptor alpha5 subtype-selective inverse agonist

John R. Atack; Karen A. Maubach; Keith A. Wafford; Desmond O'Connor; A. David Rodrigues; David C. Evans; F. David Tattersall; Mark Stuart Chambers; Angus Murray Macleod; Wai Si Eng; Christine Ryan; Eric Hostetler; Sandra Sanabria; Raymond E. Gibson; Stephen Krause; H. Donald Burns; Richard Hargreaves; Nancy G. B. Agrawal; Ruth M. McKernan; M. Gail Murphy; Kevin J. Gingrich; Gerard R. Dawson; Donald G. Musson; Kevin J. Petty

3-tert-Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)-pyrazolo[1,5-d][1,2,4]triazine (MRK-016) is a pyrazolotriazine with an affinity of between 0.8 and 1.5 nM for the benzodiazepine binding site of native rat brain and recombinant human α1-, α2-, α3-, and α5-containing GABAA receptors. It has inverse agonist efficacy selective for the α5 subtype, and this α5 inverse agonism is greater than that of the prototypic α5-selective compound 3-(5-methylisoxazol-3-yl)-6-[(1-methyl-1,2,3-triazol-4-hdyl)methyloxy]-1,2,4-triazolo[3,4-a]phthalazine (α5IA). Consistent with its greater α5 inverse agonism, MRK-016 increased long-term potentiation in mouse hippocampal slices to a greater extent than α5IA. MRK-016 gave good receptor occupancy after oral dosing in rats, with the dose required to produce 50% occupancy being 0.39 mg/kg and a corresponding rat plasma EC50 value of 15 ng/ml that was similar to the rhesus monkey plasma EC50 value of 21 ng/ml obtained using [11C]flumazenil positron emission tomography. In normal rats, MRK-016 enhanced cognitive performance in the delayed matching-to-position version of the Morris water maze but was not anxiogenic, and in mice it was not proconvulsant and did not produce kindling. MRK-016 had a short half-life in rat, dog, and rhesus monkey (0.3–0.5 h) but had a much lower rate of turnover in human compared with rat, dog, or rhesus monkey hepatocytes. Accordingly, in human, MRK-016 had a longer half-life than in preclinical species (∼3.5 h). Although it was well tolerated in young males, with a maximal tolerated single dose of 5 mg corresponding to an estimated occupancy in the region of 75%, MRK-016 was poorly tolerated in elderly subjects, even at a dose of 0.5 mg, which, along with its variable human pharmacokinetics, precluded its further development.


Nuclear Medicine Communications | 2010

Biodistribution and radiation dosimetry of the hypoxia marker 18F-HX4 in monkeys and humans determined by using whole-body PET/CT.

Mohan Doss; James Zhang; Marie-Jose Belanger; James B. Stubbs; Eric Hostetler; R. Katherine Alpaugh; Hartmuth C. Kolb; Jian Q. Yu

Objectives 18F-HX4 is a novel positron emission tomography (PET) tracer for imaging hypoxia. The purpose of this study was to determine the biodistribution and estimate the radiation dose of 18F-HX4 using whole-body PET/computed tomography (CT) scans in monkeys and humans. MethodsSuccessive whole-body PET/CT scans were done after the injection of 18F-HX4 in four healthy humans (422±142 MBq) and in three rhesus monkeys (189±3 MBq). Biodistribution was determined from PET images and organ doses were estimated using OLINDA/EXM software. ResultsThe bladder, liver, and kidneys showed the highest percentage of the injected radioactivity for humans and monkeys. For humans, approximately 45% of the activity is eliminated by bladder voiding in 3.6 h, and for monkeys 60% is in the bladder content after 3 h. The critical organ is the urinary bladder wall with the highest absorbed radiation dose of 415±18 (monkeys) and 299±38 &mgr;Gy/MBq (humans), in the 4.8-h bladder voiding interval model. The average value of effective dose for the adult male was estimated at 42±4.2 &mgr;Sv/MBq from monkey data and 27±2 &mgr;Sv/MBq from human data. ConclusionBladder, kidneys, and liver have the highest uptake of injected 18F-HX4 activity for both monkeys and humans. The urinary bladder wall receives the highest dose of 18F-HX4 and is the critical organ. Thus, patients should be encouraged to maintain adequate hydration and void frequently. The effective dose of 18F-HX4 is comparable with that of other 18F-based imaging agents.


Journal of Medicinal Chemistry | 2016

Discovery of 6-(Fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK-6240): A Positron Emission Tomography (PET) Imaging Agent for Quantification of Neurofibrillary Tangles (NFTs)

Abbas Walji; Eric Hostetler; Harold G. Selnick; Zhizhen Zeng; Patricia Miller; Idriss Bennacef; Cristian Salinas; Brett Connolly; Liza Gantert; Marie A. Holahan; Stacey S. O’Malley; Mona Purcell; Kerry Riffel; Jing Li; Jaume Balsells; Julie A. O'Brien; Stacey Melquist; Aileen Soriano; Xiaoping Zhang; Aimie M. Ogawa; Serena Xu; Elizabeth M. Joshi; Joseph Della Rocca; Fred Hess; Joel B. Schachter; David Hesk; David J. Schenk; Arie Struyk; Kerim Babaoglu; Talakad Lohith

Neurofibrillary tangles (NFTs) made up of aggregated tau protein have been identified as the pathologic hallmark of several neurodegenerative diseases including Alzheimers disease. In vivo detection of NFTs using PET imaging represents a unique opportunity to develop a pharmacodynamic tool to accelerate the discovery of new disease modifying therapeutics targeting tau pathology. Herein, we present the discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine, 6 ([(18)F]-MK-6240), as a novel PET tracer for detecting NFTs. 6 exhibits high specificity and selectivity for binding to NFTs, with suitable physicochemical properties and in vivo pharmacokinetics.


NeuroImage | 2011

Synthesis, characterization, and monkey positron emission tomography (PET) studies of [18F]Y1-973, a PET tracer for the neuropeptide Y Y1 receptor.

Eric Hostetler; Sandra M. Sanabria-Bohórquez; Hong Fan; Zhizhen Zeng; Liza Gantert; Mangay Williams; Patricia Miller; Stacey O'Malley; Minoru Kameda; Makoto Ando; Nagaaki Sato; Satoshi Ozaki; Shigeru Tokita; Hisashi Ohta; David L. Williams; Cyrille Sur; Jacquelynn J. Cook; H. Donald Burns; Richard Hargreaves

Neuropeptide Y receptor subtype 1 (NPY Y1) has been implicated in appetite regulation, and antagonists of NPY Y1 are being explored as potential therapeutics for obesity. An NPY Y1 PET tracer is useful for determining the level of target engagement by NPY Y1 antagonists in preclinical and clinical studies. Here we report the synthesis and evaluation of [(18)F]Y1-973, a novel PET tracer for NPY Y1. [(18)F]Y1-973 was radiolabeled by reaction of a primary chloride with [(18)F]KF/K2.2.2 followed by deprotection with HCl. [(18)F]Y1-973 was produced with high radiochemical purity (>98%) and high specific activity (>1000 Ci/mmol). PET studies in rhesus monkey brain showed that the distribution of [(18)F]Y1-973 was consistent with the known NPY Y1 distribution; uptake was highest in the striatum and cortical regions and lowest in the pons, cerebellum nuclei, and brain stem. Blockade of [(18)F]Y1-973 uptake with NPY Y1 antagonist Y1-718 revealed a specific signal that was dose-dependently reduced in all regions of grey matter to a similarly low level of tracer uptake, indicative of an NPY Y1 specific signal. In vitro autoradiographic studies with [(18)F]Y1-973 in rhesus monkey and human brain tissue slices revealed an uptake distribution consistent with the in vivo PET studies. Highest binding density was observed in the dentate gyrus, caudate-putamen, and cortical regions; moderate binding density in the hypothalamus and thalamus; and lowest binding density in the globus pallidus and cerebellum. In vitro saturation binding studies in rhesus monkey and human caudate-putamen homogenates confirmed a similarly high B(max)/K(d) ratio for [(18)F]Y1-973, suggesting the tracer may provide a specific signal in human brain of similar magnitude to that observed in rhesus monkey. [(18)F]Y1-973 is a suitable PET tracer for imaging NPY Y1 in rhesus monkey with potential for translation to human PET studies.

Collaboration


Dive into the Eric Hostetler's collaboration.

Top Co-Authors

Avatar

Richard Hargreaves

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stacey O'Malley

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerry Riffel

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge