Eric Huet
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric Huet.
The FASEB Journal | 2008
Eric Huet; Benoit Vallée; Dominika Szul; Franck Verrecchia; Samia Mourah; James V. Jester; Thanh Hoang-Xuan; Suzanne Menashi; Eric E. Gabison
Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell surface glycoprotein enriched on tumor cells and normal epithelia. It is mainly known for its ability to induce matrix metalloproteinase production in fibroblasts following epithelial‐stromal interaction. We sought to examine whether EMMPRIN has a broader role promoting fibroblast‐to‐myofibroblast differentiation. Because α‐smooth muscle actin (αSMA) is considered a marker of this differentiation process, we analyzed the effect of EMMPRIN on its expression in corneal and skin fibroblasts by Western blots, immunocytochemistry, and a functional assay of collagen lattice contraction. Increasing EMMPRIN expression by cDNA transfection or by treatment with exogenously added recombinant EMMPRIN resulted in an up‐regulation of αSMA expression. EMMPRIN also increased the contractile properties of the treated fibroblasts as demonstrated by the immunohistochemical appearance of stress fibers and by the accelerated contraction of fibroblast‐embedded collagen lattices. Blocking EMMPRIN expression by small interfering RNA inhibited αSMA and collagen gel contraction induced not only by EMMPRIN but also by transforming growth factor‐β, a major mediator of myofibroblast differentiation that also regulated EMMPRIN expression. These findings, combined with the fact that EMMPRIN and αSMA colocalized to the same cells in the stroma of pathological corneas, expand on the mechanism by which EMMPRIN remodels extracellular matrix during wound healing and cancer. Huet, E., Vallee, B., Szul, D., Ver‐recchia, F., Mourah, S., Jester, J. V., Hoang‐Xuan, T., Menashi, S., Gabison, E. E. Extracellular matrix metal‐loproteinase inducer/CD147 promotes myofibroblast differentiation by inducing α‐smooth muscle actin expression and collagen gel contraction: implications in tissue remodeling. FASEB J. 22, 1144–1154 (2008)
Progress in Retinal and Eye Research | 2009
Eric E. Gabison; Eric Huet; Christophe Baudouin; Suzanne Menashi
In the cornea, the epithelium and the underlying stroma are separated by the basement membrane and Bowmans layer. The disruption of these anatomical barriers during wound healing represents a key step which initiates tissue remodeling through the modification of the epithelial-stromal interactions (ESI). Diffusible cytokines are generally viewed as central modulators in the bidirectional communication between these epithelial and stromal compartments and their implication in all stages of the wound healing process has been an active area of research for many years. Our studies which aimed to explore mechanisms of matrix degradation in pathological corneal wound healing have shown that EMMPRIN, a glycoprotein expressed on corneal epithelial cell surface, can induce matrix metalloproteinase (MMP) production and myofibroblasts differentiation after direct interaction with corneal fibroblasts. EMMPRIN appears therefore as a potential mediator of ESI by direct cell-cell contact which represents a new mechanism for dysregulated MMPs induction observed in corneal ulcerations. These direct epithelial-stromal interactions (direct-ESI) can occur when delayed epithelial healing prevents regeneration of the basement membrane and allows the two cell types to come into close proximity. We propose that prevention of these interactions through inhibition of EMMPRIN may represent a promising therapeutic strategy in the inhibition of MMP induction in ulceration.
Connective Tissue Research | 2008
Eric Huet; Eric E. Gabison; Samia Mourah; Suzanne Menashi
Emmprin/CD147 is a cell membrane glycoprotein that belongs to the Ig superfamily and is involved in numerous physiological and pathological systems. Through its ability to interact with multiple partners within the cell surface and its potential to regulate the expression of several targets within the cell, emmprin may have different functions depending on the cell or tissue type. However, its role in tissue remodeling remains the most clearly demonstrated. Emmprin is able to induce, in the same cellular model, both the matrix metalloproteinases and the serine protease urokinase plasminogen activator, whose concerted action in the breakdown of the extracellular matrix (ECM) during various physiopathological situations has been reported. In addition, emmprin also promotes myofibroblasts differentiation and tissue contraction through the induction of alpha smooth muscle actin, thus expanding on the mechanism by which emmprin remodels ECM.
PLOS ONE | 2013
Benjamin Salmon; Claire Bardet; Mayssam Khaddam; Jiar Naji; Benjamin R. Coyac; Brigitte Baroukh; Franck Letourneur; Julie Lesieur; Franck Decup; Dominique Le Denmat; Antonino Nicoletti; Anne Poliard; Peter S. N. Rowe; Eric Huet; Sibylle Opsahl Vital; Agnès Linglart; Marc D. McKee; Catherine Chaussain
Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide − a substrate for PHEX and a strong inhibitor of mineralization − derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic target.
American Journal of Pathology | 2011
Eric Huet; Benoit Vallée; Jean Delbé; Samia Mourah; Virginie Prulière-Escabasse; Magali Tremouilleres; Kenji Kadomatsu; Serge Doan; Christophe Baudouin; Suzanne Menashi; Eric E. Gabison
Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure.
Experimental Hematology | 2009
Patricia Albanese; Danielle Caruelle; Guilhem Frescaline; Jean Delbé; Laurence Petit-Cocault; Eric Huet; Nathalie Charnaux; Georges Uzan; Dulce Papy-Garcia; José Courty
OBJECTIVEnGlycosaminoglycans (GAG) are major components of bone marrow extracellular matrix because they have the property to interact with cells and growth factors in hematopoietic niches. In this study, we investigated the effect of two different chemically defined GAG mimetics on mobilization of hematopoietic stem and progenitor cells (HSPCs) in mice peripheral blood.nnnMATERIALS AND METHODSnMobilization was achieved by intraperitoneal injection of GAG mimetics. Mobilized cells were characterized phenotypically by reverse transcription polymerase chain reaction and fluorescence-activated cell sorting analysis and functionally by colony-forming cell, cobblestone area-forming cell and long-term culture-initiating cell assays in vitro. Radioprotection assays were performed to confirm the functionality of primitive hematopoietic cells in vivo. Involvement of stromal-derived factor-1 (SDF-1) and matrix metalloproteinase-9 (MMP-9) were investigated.nnnRESULTSnGAG mimetics treatment induces hyperleukocytosis and mobilization of HSPC. They synergize with the effects of granulocyte colony-stimulating factor or AMD3100 on hematopoietic progenitors mobilization. Reconstitution of lethally irradiated recipient mice with peripheral blood mononuclear cells from GAG mimetic-treated donor mice improves engraftment and survival. BiAcore studies indicate that the mimetics interact directly with SDF-1. In addition, GAG mimetics-induced mobilization is associated with increased levels of pro- and active MMP-9 from bone marrow cells and increased level of SDF-1 in peripheral blood. Finally, mobilization is partially inhibited by co-injection with anti-SDF-1 antibody.nnnCONCLUSIONnThis study demonstrates that GAG mimetics induce efficient mobilization of HSPCs, associated with an activation of pro-MMP-9 and a modification in the SDF-1 concentration gradient between bone marrow and peripheral blood. We suggest that structural features of GAGs can modify the nature of mobilized cells.
Journal of Biological Chemistry | 2012
Damien Destouches; Eric Huet; Maha Sader; Sophie Frechault; Gilles Carpentier; Florie Ayoul; Jean-Paul Briand; Suzanne Menashi; José Courty
Background: NucAnt 6L (N6L) binds to nucleoproteins and inhibits tumor growth. Results: N6L bound to sulfated glycosaminoglycans, induced TIMP-3 release, and inhibited cell invasion. Silencing of TIMP-3 abolished N6L effect on cell invasion. Conclusion: N6L inhibits cell invasion through the release of TIMP-3. Significance: TIMP-3 released by N6L inhibits cell invasion. Sulfated glycosaminoglycans are presented as new receptors for N6L. Blockage of the metastasis process remains a significant clinical challenge, requiring innovative therapeutic approaches. For this purpose, molecules that inhibit matrix metalloproteinases activity or induce the expression of their natural inhibitor, the tissue inhibitor of metalloproteinases (TIMPs), are potentially interesting. In a previous study, we have shown that synthetic ligands binding to cell surface nucleolin/nucleophosmin and known as HB 19 for the lead compound and NucAnt 6L (N6L) for the most potent analog, inhibit both tumor growth and angiogenesis. Furthermore, they prevent metastasis in a RET transgenic mice model which develops melanoma. Here, we investigated the effect of N6L on the invasion capacity of MDA-MB-435 melanoma cells. Our results show that the multivalent pseudopeptide N6L inhibited Matrigel invasion of MDA-MB-435 cells in a modified Boyden chamber model. This was associated with an increase in TIMP-3 in the cell culture medium without a change in TIMP-3 mRNA expression suggesting its release from cell surface and/or extracellular matrix. This may be explained by our demonstrated N6L interaction with sulfated glycosaminoglycans and consequently the controlled bioavailability of glycosaminoglycan-bound TIMP-3. The implication of TIMP-3 in N6L-induced inhibition of cell invasion was evidenced by siRNA silencing experiments showing that the loss of TIMP-3 expression abrogated the effect of N6L. The inhibition of tumor cell invasion by N6L demonstrated in this study, in addition to its previously established inhibitory effect on tumor growth and angiogenesis, suggests that N6L represents a promising anticancer drug candidate warranting further investigation.
International Journal of Andrology | 2012
Eleni Milia-Argeiti; Eric Huet; V. T. Labropoulou; S. Mourah; P. Fénichel; Nikos K. Karamanos; Suzanne Menashi; Achilleas D. Theocharis
The histological classification of testicular germ cell tumours (TGCTs) to seminoma or non-seminomatous germ cell tumours is at present the main criterion for the clinical outcome and selection of the treatment strategy. In view of the need to identify novel prognostic biomarkers for TGCTs, we investigated the expression of the matrix metalloproteinases MMP-2 and MMP-9 in testicular tumour tissues and cell lines of both seminoma and non-seminoma origin. Immunohistochemistry and zymography analysis of tumoural tissues showed significantly higher levels of MMP-2 and MMP-9 compared with normal testis with the active forms detected only in the tumour tissues. Three cell lines representative of the different tumour types, JKT-1 seminoma, NCCIT teratocarcinoma and NTERA2/D1 embryonal carcinoma were also evaluated for their expression of these MMPs using qPCR and zymography and for their invasive properties. The more invasive non-seminomatous teratocarcinoma and embryonal cells expressed considerably more MMP-2 and MMP-9 compared with seminoma cells exhibiting lower invasiveness. Furthermore, an inverse relation was observed between invasiveness and the expression of endogenous inhibitors TIMP-1 and TIMP-2. The MMP inhibitor Marimastat inhibited invasion in all cell lines, the highest inhibition was observed in the more invasive NTERA2/D1 and NCCIT cells, which presented the highest ratio of MMP-2 and MMP-9 vs. TIMP-1 and TIMP-2. These results highlight the importance of MMP-2 and MMP-9 in the invasiveness of testicular tumours and suggest that their levels, vs. those of TIMP-1 and TIMP-2, may represent potential biomarkers for testicular malignancy.
American Journal of Sports Medicine | 2013
Mohamed Attia; Eric Huet; Camille Gossard; Suzanne Menashi; Marie-Claude Tassoni; Isabelle Martelly
Background: The principal feature of tendon degeneration is structural change of the extracellular matrix (ECM) including collagens. In painful tendons, alterations of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been described; however, the initial molecular mechanism at the origin of these alterations is still poorly understood. A rat model of supraspinatus tendon overuse has been developed, which may be predictive of pathological tendon alterations. Purpose: To determine which MMPs are involved in early ECM remodeling during overuse and their relationship with the inflammatory context. Study Design: Controlled laboratory study. Methods: Analyses were performed on rat supraspinatus tendons at 2 and 4 weeks of overuse on a downhill treadmill. Transcript levels of MMPs and TIMPs were assessed by semiquantitative reverse transcription polymerase chain reaction. Western blotting and/or immunolabeling were used for MMP-2, MMP-3, MMP-13, and extracellular MMP inducer (EMMPRIN, also called cluster of differentiation [CD] 147) detection. In situ and/or sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gelatin zymography was performed for MMP-2 and MMP-9. TIMP activity was revealed by reverse zymography. Inflammation was assessed by cytokine antibody array and/or immunolabeling. Results: Compared with a control, overused supraspinatus tendons showed a significantly higher gelatinolytic activity at 2 weeks, which slightly decreased at 4 weeks. MMP-9 and MMP-13 were undetectable; MMP-3 was downregulated in overused tendons. Only MMP-2, particularly its active form, and the MMP-2 activator MMP-14 were upregulated at 2 weeks of overuse when an increase in TIMP-2 transcripts was observed. MMP-2 upregulation occurred in the absence of inflammation but was associated with an increase of EMMPRIN/CD147. Conclusion: EMMPRIN/CD147-regulated MMP-2 and MMP-14, associated with low MMP-3, appear as the main characteristics of ECM remodeling in early overused tendons. Whether alterations in the pattern of these MMPs are an adaptive response or a repair response that may degenerate into tendinosis, is still uncertain. Moreover, there seems to be no indication for an inflammatory response to overuse, suggesting that the increased metalloproteinase activity is rather a response to a mechanical stress than an inflammatory one. Clinical Relevance: Any strategy aimed at preventing full-thickness tears resulting from initial tendon matrix alterations should consider these changes in MMP-3, MMP-2, and MMP-14, or further upstream, EMMPRIN.
Bone | 2014
Mayssam Khaddam; Eric Huet; Benoit Vallée; Morad Bensidhoum; Dominique Le Denmat; Anna Filatova; Lucia Jimenez-Rojo; Sandy Ribes; Georg Lorenz; Maria Morawietz; Gaël Y. Rochefort; Andreas Kiesow; Thimios A. Mitsiadis; Anne Poliard; Matthias Petzold; Eric E. Gabison; Suzanne Menashi; Catherine Chaussain
Tooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation. We report a delay in enamel deposition and formation that is clearly distinguishable in the growing incisor and associated with a significant reduction of MMP-3 and MMP-20 expression in tooth germs of KO mice. Insufficient basement membrane degradation is evidenced by a persistent laminin immunostaining, resulting in a delay of both odontoblast and ameloblast differentiation. Consequently, enamel volume and thickness are decreased in adult mutant teeth but enamel maturation and tooth morphology are normal, as shown by micro-computed tomographic (micro-CT), nanoindentation, and scanning electron microscope analyses. In addition, the dentino-enamel junction appears as a rough calcified layer of approximately 10±5μm thick (mean±SD) in both molars and growing incisors of KO adult mice. These results indicate that EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the expression of MMPs. The mild tooth phenotype observed in EMMPRIN KO mice suggests that the direct effect of EMMPRIN may be limited to a short time window, comprised between basement membrane degradation allowing direct cell contact and calcified matrix deposition.