Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William Kilembe is active.

Publication


Featured researches published by William Kilembe.


Science | 2014

Selection bias at the heterosexual HIV-1 transmission bottleneck

Jonathan M. Carlson; Malinda Schaefer; Daniela C. Monaco; Rebecca Batorsky; Daniel T. Claiborne; Jessica L. Prince; Martin J. Deymier; Zachary Ende; Nichole R. Klatt; Charles E. DeZiel; Tien Ho Lin; Jian Peng; Aaron Seese; Roger L. Shapiro; John Frater; Thumbi Ndung'u; Jianming Tang; Paul A. Goepfert; Jill Gilmour; Matthew Price; William Kilembe; David Heckerman; P Goulder; Todd M. Allen; Susan R. Allen; Eric Hunter

Introduction Heterosexual HIV-1 transmission is an inefficient process with rates reported at <1% per unprotected sexual exposure. When transmission occurs, systemic infection is typically established by a single genetic variant, taken from the swarm of genetically distinct viruses circulating in the donor. Whether that founder virus represents a chance event or was systematically favored is unclear. Our work has tested a central hypothesis that founder virus selection is biased toward certain genetic characteristics. Fitter viruses (red) are favored more in woman-to-man (bottom curve) than in man-to-woman (top curve) transmission. The probability that a majority donor amino acid variant is transmitted is a function of relative fitness, here estimated by the frequency of the variant in the Zambian population. Even residues common in the population are less likely to be transmitted to healthy men than to women, indicative of higher selection bias in woman-to-man transmission. Rationale If HIV-1 transmission involves selection for viruses with certain favorable characteristics, then such advantages should emerge as statistical biases when viewed across many viral loci in many transmitting partners. We therefore identified 137 Zambian heterosexual transmission pairs, for whom plasma samples were available for both the donor and recipient partner soon after transmission, and compared the viral sequences obtained from each partner to identify features that predicted whether the majority amino acid observed at any particular position in the donor was transmitted. We focused attention on two features: viral genetic characteristics that correlate with viral fitness, and clinical factors that influence transmission. Statistical modeling indicates that the former will be favored for transmission, while the latter will nullify this relative advantage. Results We observed a highly significant selection bias that favors the transmission of amino acids associated with increased fitness. These features included the frequency of the amino acid in the study cohort, the relative advantage of the amino acid with respect to the stability of the protein, and features related to immune escape and compensation. This selection bias was reduced in couples with high risk of transmission. In particular, significantly less selection bias was observed in men with genital inflammation and in women (regardless of inflammation status), compared to healthy men, suggesting a more permissive environment in the female than male genital tract. Consistent with this observation, viruses transmitted to women were characterized by lower predicted fitness than those in men. The presence of amino acids favored during transmission predicted which individual virus within a donor was transmitted to their partner, while chronically infected individuals with viral populations characterized by a predominance of these amino acids were more likely to transmit to their partners. Conclusion These data highlight the clear selection biases that benefit fitter viruses during transmission in the context of a stochastic process. That such biases exist, and are tempered by certain risk factors, suggests that transmission is frequently characterized by many abortive transmission events in which some target cells are nonproductively infected. Moreover, for efficient transmission, some changes that favored survival in the transmitting partner are frequently discarded, resulting in overall slower evolution of HIV-1 in the population. Paradoxically, by increasing the selection bias at the transmission bottleneck, reduction of susceptibility may increase the expected fitness of breakthrough viruses that establish infection and may therefore worsen the prognosis for the newly infected partner. Conversely, preventive or therapeutic approaches that weaken the virus may reduce overall transmission rates via a mechanism that is independent from the quantity of circulating virus, and may therefore provide long-term benefits to the recipient if transmission does occur. HIV needs to be fit to transmit Although you might not think it, its hard to catch HIV. Less than 1% of unprotected sexual exposures result in infection. What then leads to transmission? Carlson et al. determined the amino acid sequence of viruses infecting 137 Zambian heterosexual couples in which one partner infected the other (see the Perspective by Joseph and Swanstrom). The authors then used statistical modeling and found that transmitted viruses are typically the most evolutionarily fit. That is, compared to other viral variants in the infected person, the transmitted virus most closely matches the most common viral sequence found in the Zambian population. Science, this issue 10.1126/science.1254031; see also p. 136 An analysis of discordant couples reveals that transmitted HIV-1 viruses are typically the most evolutionarily fit. [Also see Perspective by Joseph and Swanstrom] Heterosexual transmission of HIV-1 typically results in one genetic variant establishing systemic infection. We compared, for 137 linked transmission pairs, the amino acid sequences encoded by non-envelope genes of viruses in both partners and demonstrate a selection bias for transmission of residues that are predicted to confer increased in vivo fitness on viruses in the newly infected, immunologically naïve recipient. Although tempered by transmission risk factors, such as donor viral load, genital inflammation, and recipient gender, this selection bias provides an overall transmission advantage for viral quasispecies that are dominated by viruses with high in vivo fitness. Thus, preventative or therapeutic approaches that even marginally reduce viral fitness may lower the overall transmission rates and offer long-term benefits even upon successful transmission.


PLOS Pathogens | 2016

Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort.

Elise Landais; Xiayu Huang; Colin Havenar-Daughton; Ben Murrell; Matthew Price; Lalinda Wickramasinghe; Alejandra Ramos; Charoan B. Bian; Melissa Simek; Susan Allen; Etienne Karita; William Kilembe; Shabir Lakhi; Mubiana Inambao; Anatoli Kamali; Eduard J. Sanders; Omu Anzala; Vinodh Edward; Linda-Gail Bekker; Jianming Tang; Jill Gilmour; Sergei L. Kosakovsky-Pond; Pham Phung; Terri Wrin; Shane Crotty; Adam Godzik; Pascal Poignard

Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.


PLOS Pathogens | 2012

Role of Transmitted Gag CTL Polymorphisms in Defining Replicative Capacity and Early HIV-1 Pathogenesis

Jessica L. Prince; Daniel T. Claiborne; Jonathan M. Carlson; Malinda Schaefer; Tianwei Yu; Shabir Lahki; Heather A. Prentice; Ling Yue; Sundaram A. Vishwanathan; William Kilembe; Paul A. Goepfert; Matthew Price; Jill Gilmour; Joseph Mulenga; Paul Farmer; Cynthia A. Derdeyn; Jiaming Tang; David Heckerman; Richard A. Kaslow; Susan Allen; Eric Hunter

Initial studies of 88 transmission pairs in the Zambia Emory HIV Research Project cohort demonstrated that the number of transmitted HLA-B associated polymorphisms in Gag, but not Nef, was negatively correlated to set point viral load (VL) in the newly infected partners. These results suggested that accumulation of CTL escape mutations in Gag might attenuate viral replication and provide a clinical benefit during early stages of infection. Using a novel approach, we have cloned gag sequences isolated from the earliest seroconversion plasma sample from the acutely infected recipient of 149 epidemiologically linked Zambian transmission pairs into a primary isolate, subtype C proviral vector, MJ4. We determined the replicative capacity (RC) of these Gag-MJ4 chimeras by infecting the GXR25 cell line and quantifying virion production in supernatants via a radiolabeled reverse transcriptase assay. We observed a statistically significant positive correlation between RC conferred by the transmitted Gag sequence and set point VL in newly infected individuals (p = 0.02). Furthermore, the RC of Gag-MJ4 chimeras also correlated with the VL of chronically infected donors near the estimated date of infection (p = 0.01), demonstrating that virus replication contributes to VL in both acute and chronic infection. These studies also allowed for the elucidation of novel sites in Gag associated with changes in RC, where rare mutations had the greatest effect on fitness. Although we observed both advantageous and deleterious rare mutations, the latter could point to vulnerable targets in the HIV-1 genome. Importantly, RC correlated significantly (p = 0.029) with the rate of CD4+ T cell decline over the first 3 years of infection in a manner that is partially independent of VL, suggesting that the replication capacity of HIV-1 during the earliest stages of infection is a determinant of pathogenesis beyond what might be expected based on set point VL alone.


Immunity | 2016

Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch.

Daniel T. MacLeod; Nancy M. Choi; Bryan Briney; Fernando Garces; Lorena S. Ver; Elise Landais; Ben Murrell; Terri Wrin; William Kilembe; Chi-Hui Liang; Alejandra Ramos; Chaoran B. Bian; Lalinda Wickramasinghe; Leopold Kong; Kemal Eren; Chung-Yi Wu; Chi-Huey Wong; Matthew Price; Jill Gilmour; Pat Fast; Anatoli Kamali; Eduard J. Sanders; Omu Anzala; Susan Allen; Eric Hunter; Etienne Karita; Shabir Lakhi; Mubiana Inambao; Vinodh Edward; Linda-Gail Bekker

The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ∼11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways.


AIDS | 2013

Disease progression by infecting HIV-1 subtype in a seroconverter cohort in sub-Saharan Africa.

Pauli N. Amornkul; Etienne Karita; Anatoli Kamali; Wasima Rida; Eduard J. Sanders; Shabir Lakhi; Matthew Price; William Kilembe; Emmanuel Cormier; Omu Anzala; Mary H. Latka; Linda-Gail Bekker; Susan Allen; Jill Gilmour; Patricia Fast

Objective:To describe immunologic, virologic, and clinical HIV disease progression by HIV-1 subtype among Africans with well documented estimated dates of HIV infection (EDIs). Design:Prospective cohort. Methods:Adults and youth with documented HIV-1 infection in the past 12 months were recruited from seroincidence cohorts in East and Southern Africa and followed at 3–6 month intervals. Blood for lymphocyte subset and viral load determination was collected at each visit. Pol was sequenced from the first positive specimen to ascertain subtype. Preantiretroviral therapy disease progression was measured by three time-to-event endpoints: CD4+ cell count 350 cells/&mgr;l or less, viral load measurement at least 1 × 105 copies/ml, and clinical AIDS. Results:From 2006 to 2011, 615 participants were enrolled at nine research centers in Kenya, Rwanda, South Africa, Uganda, and Zambia; 579 (94.1%) had viral subtyping completed. Predominant subtypes were C (256, 44.2%), A (209, 36.1%), and D (84, 14.5%). After adjustment for age, sex, and human leukocyte antigen alleles in Cox regression analyses, subtype C-infected participants progressed faster than subtype A to all three endpoints [CD4+ hazard ratio 1.60, 95% (confidence interval) CI 1.16, 2.20; viral load hazard ratio 1.59, 95% CI 1.12, 2.25; and AIDS hazard ratio 1.60, 95% CI 1.11, 2.31). Subtype D-infected participants reached high viral load more rapidly (hazard ratio 1.61, 95% CI 1.01, 2.57) and progressed nearly twice as fast to AIDS compared to subtype A (hazard ratio 1.93, 95% CI 1.21, 3.09). Conclusion:Subtype-specific differences in HIV disease progression suggest that the local subtype distribution be considered when planning HIV programs and designing and defining clinical endpoints for HIV prevention trials.


Journal of Womens Health | 2011

A Randomized Controlled Trial to Promote Long-Term Contraceptive Use Among HIV-Serodiscordant and Concordant Positive Couples in Zambia.

Rob Stephenson; Bellington Vwalika; Lauren Greenberg; Yusuf Ahmed; Cheswa Vwalika; Elwyn Chomba; William Kilembe; Amanda Tichacek; Susan Allen

BACKGROUND Countries facing high HIV prevalence often also experience high levels of fertility and low contraceptive use, suggesting high levels of unmet need for contraceptive services. In particular, the unique needs of couples with one or both partners HIV positive are largely missing from many current family planning efforts, which focus on the prevention of pregnancies in the absence of reduction of the risk of HIV and other sexually transmitted infections (STIs). METHODS This article presents an examination of contraceptive method uptake among a cohort of HIV serodiscordant and concordant positive study participants in Zambia. RESULTS Baseline contraceptive use was low; however, exposure to a video-based intervention that provided information on contraceptive methods and modeled desirable future planning behaviors dramatically increased the uptake of modern contraceptive methods. CONCLUSIONS Including information on family planning in voluntary counseling and testing (VCT) services in addition to tailoring the delivery of family planning information to meet the needs and concerns of HIV-positive women or those with HIV-positive partners is an essential step in the delivery of services and prevention efforts to reduce the transmission of HIV. Family planning and HIV prevention programs should integrate counseling on dual method use, combining condoms for HIV/STI prevention with a long-acting contraceptive for added protection against unplanned pregnancy.


PLOS Pathogens | 2015

Heterosexual Transmission of Subtype C HIV-1 Selects Consensus-Like Variants without Increased Replicative Capacity or Interferon-α Resistance.

Martin J. Deymier; Zachary Ende; Angharad E. Fenton-May; Dario A. Dilernia; William Kilembe; Susan Allen; Persephone Borrow; Eric Hunter

Heterosexual transmission of HIV-1 is characterized by a genetic bottleneck that selects a single viral variant, the transmitted/founder (TF), during most transmission events. To assess viral characteristics influencing HIV-1 transmission, we sequenced 167 near full-length viral genomes and generated 40 infectious molecular clones (IMC) including TF variants and multiple non-transmitted (NT) HIV-1 subtype C variants from six linked heterosexual transmission pairs near the time of transmission. Consensus-like genomes sensitive to donor antibodies were selected for during transmission in these six transmission pairs. However, TF variants did not demonstrate increased viral fitness in terms of particle infectivity or viral replicative capacity in activated peripheral blood mononuclear cells (PBMC) and monocyte-derived dendritic cells (MDDC). In addition, resistance of the TF variant to the antiviral effects of interferon-α (IFN-α) was not significantly different from that of non-transmitted variants from the same transmission pair. Thus neither in vitro viral replicative capacity nor IFN-α resistance discriminated the transmission potential of viruses in the quasispecies of these chronically infected individuals. However, our findings support the hypothesis that within-host evolution of HIV-1 in response to adaptive immune responses reduces viral transmission potential.


PLOS ONE | 2012

Failure of A Novel, Rapid Antigen and Antibody Combination Test to Detect Antigen-Positive HIV Infection in African Adults with Early HIV Infection

William Kilembe; Michelle Keeling; Etienne Karita; Shabir Lakhi; Paramesh Chetty; Matthew Price; Heeran Makkan; Mary H. Latka; Morongwe Likoti; Kenneth Ilukui; Mackenzie Hurlston; Susan Allen; Gwynn Stevens; Eric Hunter

Background Acute HIV infection (prior to antibody seroconversion) represents a high-risk window for HIV transmission. Development of a test to detect acute infection at the point-of-care is urgent. Methods Volunteers enrolled in a prospective study of HIV incidence in four African cities, Kigali in Rwanda and Ndola, Kitwe and Lusaka in Zambia, were tested regularly for HIV by rapid antibody test and p24 antigen ELISA. Five subgroups of samples were also tested by the Determine Ag/Ab Combo test 1) Antigen positive, antibody negative (acute infection); 2) Antigen positive, antibody positive; 3) Antigen negative, antibody positive; 4) Antigen negative, antibody negative; and 5) Antigen false positive, antibody negative (HIV uninfected). A sixth group included serial dilutions from a p24 antigen-positive control sample. Combo test results were reported as antigen positive, antibody positive, or both. Results Of 34 group 1 samples with VL between 5x105 and >1.5x107 copies/mL (median 3.5x106), 1 (2.9%) was detected by the Combo antigen component, 7 (20.6%) others were positive by the Combo antibody component. No group 2 samples were antigen positive by the Combo test (0/18). Sensitivity of the Combo antigen test was therefore 1.9% (1/52, 95% CI 0.0, 9.9). One false positive Combo antibody result (1/30, 3.3%) was observed in group 4. No false-positive Combo antigen results were observed. The Combo antigen test was positive in group 6 at concentrations of 80 pg/mL, faintly positive at 40 and 20 pg/mL, and negative thereafter. The p24 ELISA antigen test remained positive at 5 pg/mL. Conclusions Although the antibody component of the Combo test detected antibodies to HIV earlier than the comparison antibody tests used, less than 2% of the cases of antigen-positive HIV infection were detected by the Combo antigen component. The development of a rapid point-of-care test to diagnose acute HIV infection remains an urgent goal.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression

Daniel T. Claiborne; Jessica L. Prince; Eileen Scully; Gladys Macharia; Luca Micci; Benton Lawson; Jakub Kopycinski; Martin J. Deymier; Thomas H. Vanderford; Krystelle Nganou-Makamdop; Zachary Ende; Kelsie Brooks; Jianming Tang; Tianwei Yu; Shabir Lakhi; William Kilembe; Guido Silvestri; Paul A. Goepfert; Matthew Price; Susan Allen; Mirko Paiardini; Marcus Altfeld; Jill Gilmour; Eric Hunter

Significance HIV infection is associated with elevated inflammation and aberrant cellular immune activation. Indeed, the activation status of an HIV-infected individual is often more predictive of disease trajectory than viral load. Here, we highlight the importance of the replicative fitness of the transmitted viral variant in driving an early inflammatory state, characterized by T-cell activation and immune dysfunction. This impact on T-cell homeostasis is independent of protective host immune response genes and viral load. Highly replicating transmitted variants were also significantly more efficient at infecting memory CD4+ T cells, a population important for maintaining the latent viral reservoir. Together, these data provide a mechanism whereby viral replicative fitness acts as a major determinant of disease progression and persistence. HIV-1 infection is characterized by varying degrees of chronic immune activation and disruption of T-cell homeostasis, which impact the rate of disease progression. A deeper understanding of the factors that influence HIV-1–induced immunopathology and subsequent CD4+ T-cell decline is critical to strategies aimed at controlling or eliminating the virus. In an analysis of 127 acutely infected Zambians, we demonstrate a dramatic and early impact of viral replicative capacity (vRC) on HIV-1 immunopathogenesis that is independent of viral load (VL). Individuals infected with high-RC viruses exhibit a distinct inflammatory cytokine profile as well as significantly elevated T-cell activation, proliferation, and CD8+ T-cell exhaustion, during the earliest months of infection. Moreover, the vRC of the transmitted virus is positively correlated with the magnitude of viral burden in naive and central memory CD4+ T-cell populations, raising the possibility that transmitted viral phenotypes may influence the size of the initial latent viral reservoir. Taken together, these findings support an unprecedented role for the replicative fitness of the founder virus, independent of host protective genes and VL, in influencing multiple facets of HIV-1–related immunopathology, and that a greater focus on this parameter could provide novel approaches to clinical interventions.


Retrovirology | 2012

HIV-1 subtype C superinfected individuals mount low autologous neutralizing antibody responses prior to intrasubtype superinfection

Debby Basu; Colleen S. Kraft; Megan K. Murphy; Patricia J. Campbell; Tianwei Yu; Peter Hraber; Carmela Irene; Abraham Pinter; Elwyn Chomba; Joseph Mulenga; William Kilembe; Susan Allen; Cynthia A. Derdeyn; Eric Hunter

BackgroundThe potential role of antibodies in protection against intra-subtype HIV-1 superinfection remains to be understood. We compared the early neutralizing antibody (NAb) responses in three individuals, who were superinfected within one year of primary infection, to ten matched non-superinfected controls from a Zambian cohort of subtype C transmission cases. Sequence analysis of single genome amplified full-length envs from a previous study showed limited diversification in the individuals who became superinfected with the same HIV-1 subtype within year one post-seroconversion. We hypothesized that this reflected a blunted NAb response, which may have made these individuals more susceptible to superinfection.ResultsNeutralization assays showed that autologous plasma NAb responses to the earliest, and in some cases transmitted/founder, virus were delayed and had low to undetectable titers in all three superinfected individuals prior to superinfection. In contrast, NAbs with a median IC50 titer of 1896 were detected as early as three months post-seroconversion in non-superinfected controls. Early plasma NAbs in all subjects showed limited but variable levels of heterologous neutralization breadth. Superinfected individuals also exhibited a trend toward lower levels of gp120- and V1V2-specific IgG binding antibodies but higher gp120-specific plasma IgA binding antibodies.ConclusionsThese data suggest that the lack of development of IgG antibodies, as reflected in autologous NAbs as well as gp120 and V1V2 binding antibodies to the primary infection virus, combined with potentially competing, non-protective IgA antibodies, may increase susceptibility to superinfection in the context of settings where a single HIV-1 subtype predominates.

Collaboration


Dive into the William Kilembe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge