Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric P. Plaisance is active.

Publication


Featured researches published by Eric P. Plaisance.


Sports Medicine | 2006

Physical Activity and High-Sensitivity C-Reactive Protein

Eric P. Plaisance; Peter W. Grandjean

Cardiovascular disease (CVD) remains one of the leading causes of death and disability in developed countries around the world despite the documented success of lifestyle and pharmacological interventions. This illustrates the multifactorial nature of atherosclerosis and the use of novel inflammatory markers as an adjunct to risk factor reduction strategies. As evidence continues to accumulate that inflammation is involved in all stages of the development and progression of atherosclerosis, markers of inflammation such as high-sensitivity C-reactive protein (CRP) may provide additional information regarding the biological status of the atherosclerotic lesion.Recent investigations suggest that physical activity reduces CRP levels. Higher levels of physical activity and cardiorespiratory fitness are consistently associated with 6–35% lower CRP levels. Longitudinal training studies that have demonstrated reductions in CRP concentrations range from 16% to 41%, an effect that may be independent of baseline levels of CRP, body composition or weight loss. The average change in CRP associated with physical activity appears to be at least as good, if not better, than currently prescribed pharmacological interventions in similar populations. The primary purpose of this review will be to present evidence from both cross-sectional and longitudinal investigations that physical activity lowers CRP levels in a dose-response manner. Finally, this review will examine factors such as body composition, sex, blood sample timing, diet and smoking, which may influence the CRP response to physical activity.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states

Barbara E. Hasek; Laura K. Stewart; Tara M. Henagan; Anik Boudreau; Natalie R. Lenard; Corey Black; Jeho Shin; Peter Huypens; Virginia Malloy; Eric P. Plaisance; Rozlyn A. Krajcik; Norman Orentreich; Thomas W. Gettys

Dietary methionine restriction (MR) is a mimetic of chronic dietary restriction (DR) in the sense that MR increases rodent longevity, but without food restriction. We report here that MR also persistently increases total energy expenditure (EE) and limits fat deposition despite increasing weight-specific food consumption. In Fischer 344 (F344) rats consuming control or MR diets for 3, 9, and 20 mo, mean EE was 1.5-fold higher in MR vs. control rats, primarily due to higher EE during the night at all ages. The day-to-night transition produced a twofold higher heat increment of feeding (3.0 degrees C vs. 1.5 degrees C) in MR vs. controls and an exaggerated increase in respiratory quotient (RQ) to values greater than 1, indicative of the interconversion of glucose to lipid by de novo lipogenesis. The simultaneous inhibition of glucose utilization and shift to fat oxidation during the day was also more complete in MR (RQ approximately 0.75) vs. controls (RQ approximately 0.85). Dietary MR produced a rapid and persistent increase in uncoupling protein 1 expression in brown (BAT) and white adipose tissue (WAT) in conjunction with decreased leptin and increased adiponectin levels in serum, suggesting that remodeling of the metabolic and endocrine function of adipose tissue may have an important role in the overall increase in EE. We conclude that the hyperphagic response to dietary MR is matched to a coordinated increase in uncoupled respiration, suggesting the engagement of a nutrient-sensing mechanism, which compensates for limited methionine through integrated effects on energy homeostasis.


American Journal of Physiology-endocrinology and Metabolism | 2009

Niacin stimulates adiponectin secretion through the GPR109A receptor

Eric P. Plaisance; Martina Lukasova; Stefan Offermanns; Youyan Zhang; Guoqing Cao; Robert L. Judd

Niacin (nicotinic acid) has recently been shown to increase serum adiponectin concentrations in men with the metabolic syndrome. However, little is known about the mechanism(s) by which niacin regulates the intracellular trafficking and secretion of adiponectin. Since niacin appears to exert its effects on lipolysis through receptor (GPR109A)-dependent and -independent pathways, the purpose of this investigation was to examine the role of the recently identified GPR109A receptor in adiponectin secretion. Initial in vivo studies in rats demonstrated that niacin (30 mg/kg po) acutely increases serum adiponectin concentrations, whereas it decreases NEFAs. Further in vitro studies demonstrated an increase in adiponectin secretion and a decrease in lipolysis in primary adipocytes following treatment with niacin or beta-hydroxybutyrate (an endogenous ligand of the GPR109A receptor), but these effects were blocked when adipocytes were pretreated with pertussis toxin. Niacin had no effect on adiponectin secretion or lipolysis in 3T3-L1 adipocytes, which have limited cell surface expression of the GPR109A receptor. To further substantiate these in vitro findings, wild-type and GPR109A receptor knockout mice were administered a single dose of niacin or placebo, and serum was obtained for the determination of adiponectin and NEFA concentrations. Serum adiponectin concentrations increased and serum NEFAs decreased in the wild-type mice within 10 min following niacin administration. However, niacin administration had no effect on adiponectin and NEFA concentrations in the GPR109A receptor knockout mice. These results demonstrate that the GPR109A receptor plays an important role in the dual regulation of adiponectin secretion and lipolysis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Role of β-adrenergic receptors in the hyperphagic and hypermetabolic responses to dietary methionine restriction

Eric P. Plaisance; Tara M. Henagan; Haley Echlin; Anik Boudreau; Kasey L. Hill; Natalie R. Lenard; Barbara E. Hasek; Norman Orentreich; Thomas W. Gettys

Dietary methionine restriction (MR) limits fat deposition and decreases plasma leptin, while increasing food consumption, total energy expenditure (EE), plasma adiponectin, and expression of uncoupling protein 1 (UCP1) in brown and white adipose tissue (BAT and WAT). beta-adrenergic receptors (beta-AR) serve as conduits for sympathetic input to adipose tissue, but their role in mediating the effects of MR on energy homeostasis is unclear. Energy intake, weight, and adiposity were modestly higher in beta(3)-AR(-/-) mice on the Control diet compared with wild-type (WT) mice, but the hyperphagic response to the MR diet and the reduction in fat deposition did not differ between the genotypes. The absence of beta(3)-ARs also did not diminish the ability of MR to increase total EE and plasma adiponectin or decrease leptin mRNA, but it did block the MR-dependent increase in UCP1 mRNA in BAT but not WAT. In a further study, propranolol was used to antagonize remaining beta-adrenergic input (beta(1)- and beta(2)-ARs) in beta(3)-AR(-/-) mice, and this treatment blocked >50% of the MR-induced increase in total EE and UCP1 induction in both BAT and WAT. We conclude that signaling through beta-adrenergic receptors is a component of the mechanism used by dietary MR to increase EE, and that beta(1)- and beta(2)-ARs are able to substitute for beta(3)-ARs in mediating the effect of dietary MR on EE. These findings are consistent with the involvement of both UCP1-dependent and -independent mechanisms in the physiological responses affecting energy balance that are produced by dietary MR.


Methods of Molecular Biology | 2009

Imaging Systems for Westerns: Chemiluminescence vs. Infrared Detection

Suresh T. Mathews; Eric P. Plaisance; Teayoun Kim

Western blot detection methods have traditionally used X-ray films to capture chemiluminescence. The increasing costs for film, reagents, and maintenance have driven researchers away from darkrooms to more sensitive and technologically advanced digital imaging systems. Cooled charge coupled devices (CCD) cameras capture both chemiluminescence and fluorescence images, with limitations for each detection method. Chemiluminescence detection is highly sensitive and relies on an enzymatic reaction that produces light, which can be detected by a CCD camera that records photons and displays an image based on the amount of light generated. However, the enzymatic reaction is dynamic and changes over time making it necessary to optimize reaction times and imaging. Fluorescent detection with a CCD camera offers a solution to this problem since the signal generated by the proteins on the membrane is measured in a static state. Despite this advantage, many researchers continue to use chemiluminescent detection methods due to the generally poor performance of fluorophores in the visible spectrum. Infrared imaging systems offer a solution to the dynamic reactions of chemiluminescence and the poor performance of fluorophores detected in the visible spectrum by imaging fluorphores in the infrared spectrum. Infrared imaging is equally sensitive to chemiluminescence and more sensitive to visible fluorescence due in part to reduced autofluorescence in the longer infrared wavelength. Furthermore, infrared detection is static, which allows a wider linear detection range than chemiluminescence without a loss of signal. A distinct advantage of infrared imaging is the ability to simultaneously detect proteins on the same blot, which minimizes the need for stripping and reprobing leading to an increase in detection efficiency. Here, we describe the methodology for chemiluminescent (UVP BioChemi) and infrared (LI-COR Odyssey) imaging, and briefly discuss their advantages and disadvantages.


Medicine and Science in Sports and Exercise | 2008

Aerobic exercise and postprandial lipemia in men with the metabolic syndrome.

Michael L. Mestek; Eric P. Plaisance; Lance Ratcliff; James K. Taylor; Sang-Ouk Wee; Peter W. Grandjean

INTRODUCTION It is currently unclear as to how exercise prescription variables influence attenuations of postprandial lipemia (PPL) in men with the metabolic syndrome (MetS) after exercise. Therefore, the purposes of this investigation were to compare the effects of low- and moderate-intensity exercise and accumulated versus continuous exercise on PPL in males with MetS. METHODS Fourteen males with MetS (waist circumference (WC) = 110.2 +/- 10.9 cm; triglycerides (TG) = 217 +/- 84 mg dL(-1); fasting blood glucose = 105 +/- 7 mg dL(-1); high-density lipoprotein cholesterol (HDL-C) = 44 +/- 7 mg dL(-1); systolic blood pressure (SBP) = 120 +/- 12 mm Hg; diastolic blood pressure (DBP) = 76 +/- 10 mm Hg) completed a control condition consisting of a high-fat meal and blood sampling at 2 h intervals for 6 h. Next, participants completed the following exercise conditions: 1) continuous moderate-intensity (MOD-1), 2) continuous low-intensity (LOW-1), and 3) two accumulated moderate-intensity sessions (MOD-2). The test meal and blood sampling were repeated 12-14 h after exercise. Area under the curve (AUC) scores and temporal postprandial responses were analyzed using repeated-measures ANOVA for TG and insulin. RESULTS The TG AUC decreased by 27% after LOW-1. TG concentrations were also reduced by 22% and 21% at 4 h postmeal after LOW-1 and MOD-1, yet TG parameters were no different from the control condition after MOD-2 (P < 0.05 for all). CONCLUSION These findings indicate that 500 kcal of continuous aerobic exercise before a meal attenuates PPL in men with MetS. This outcome can be achieved through low- or moderate-intensity exercise performed in a single session. Accumulating moderate-intensity exercise does not appear to effectively modulate PPL in men with MetS.


World Journal of Diabetes | 2010

Pharmacological effects of lipid-lowering drugs on circulating adipokines

Desiree Wanders; Eric P. Plaisance; Robert L. Judd

The cardioprotective effects of lipid-lowering drugs have been primarily attributed to their effects on blood lipid metabolism. However, emerging evidence indicates that lipid-lowering drugs also modulate the synthesis and secretion of adipose tissue-secreted proteins referred to as adipokines. Adipokines influence energy homeostasis and metabolism and have also been shown to modulate the vascular inflammatory cascade. The purpose of this review will be to examine the reported effects of commonly used lipid-lowering drugs (statins, fibrates, niacin and omega-3-fatty acids) on the circulating concentrations of leptin, adiponectin, tumor necrosis-factor-α (TNF-α), Retinol binding protein 4 (RBP4) and resistin. Overall, the lipid-lowering drugs reviewed have minimal effects on leptin and resistin concentrations.Conversely, circulating adiponectin concentrations are consistently increased by each lipid-lowering drug reviewed with the greatest effects produced by niacin. Studies that have examined the effects of statins, niacin and omega-3-fatty acids on TNF-α demonstrate that these agents have little effect on circulating TNF-α concentrations. Niacin and fibrates appear to lower RBP4 but not resistin concentrations. The results of the available studies suggest that a strong relationship exists between pharmacological reductions in blood lipids and adiponectin that is not obvious for other adipokines reviewed.


Journal of American College Health | 2008

The Relationship Between Pedometer-Determined and Self-Reported Physical Activity and Body Composition Variables in College-Aged Men and Women

Michael L. Mestek; Eric P. Plaisance; Peter W. Grandjean

Pedometer-determined physical activity (PA) is inversely related to body composition in middle-aged adults; however, researchers have not established such a relationship in college students. Objective and Participants: In this study, the authors attempted to characterize PA and examine its relationship with body composition in undergraduate college students (N = 88). Methods: The authors measured the BC of 44 women (M age = 21 ± 1 year, M body mass index [BMI] = 23.9 ± 4 kg/m2) and 44 men (M age = 22 ± 1 year, BMI = 26.9 ± 0.9 kg/m2); participants also wore a pedometer for 7 days and completed a PA questionnaire. Results: Men averaged significantly more steps/day (10,027 ± 3,535) than did women (8,610 ± 2,252). For women only, the authors observed significant correlations between steps/day and body composition variables. Men reported engaging in vigorous PA significantly more often than did women. Conclusions: These findings indicate that men engage in PA more often but that PA is related to body composition only in women. In addition, there is better agreement between pedometer-measured and self-reported PA in college-aged men than women.


Metabolism-clinical and Experimental | 2008

Increased total and high–molecular weight adiponectin after extended-release niacin

Eric P. Plaisance; Peter W. Grandjean; Brandon L. Brunson; Robert L. Judd

Niacin has recently been shown to increase serum total concentrations of the adipocyte-derived protein adiponectin. Adiponectin possesses important vascular anti-inflammatory and metabolic properties that have been attributed to the active high-molecular weight (HMW) complex of the protein. Our purpose was to examine the influence of extended-release niacin on the distribution of HMW and low-molecular weight (LMW) adiponectin complexes. Fifteen men with the metabolic syndrome were treated for 6 weeks with extended-release niacin. Serum total adiponectin concentrations increased by 46% after the niacin intervention (P < .05). High-molecular weight adiponectin accounted for 63% of the increase in total adiponectin, which was reflected by a shift in the HMW/LMW adiponectin ratio from 0.69 to 0.86 (+25%) (P < .05). Serum insulin concentrations increased by 20% after the niacin intervention despite an increase in HMW adiponectin concentrations (P < .05). These results suggest that the increase in total adiponectin concentrations observed with extended-release niacin is primarily due to an increase in the active HMW complex. Therefore, at least part of the cardioprotective benefits of niacin may be attributed to a shift in the HMW/LMW adiponectin ratio in obese men with the metabolic syndrome.


Metabolism-clinical and Experimental | 2009

The influence of sex, body composition, and nonesterified fatty acids on serum adipokine concentrations

Eric P. Plaisance; Peter W. Grandjean; Robert L. Judd; Kathy W. Jones; J. Kyle Taylor

Serum adiponectin concentrations are higher in women than men. The sexual dimorphism for adiponectin has been attributed to the direct effects of testosterone on adipose tissue adiponectin secretion. However, serum testosterone and adiponectin concentrations are generally lower in obese men than lean men, suggesting that sex steroids may not be the only factor that contributes to sex differences in serum adiponectin. The primary objective of this study was to examine the influence of sex, body composition, and nonesterified fatty acids (NEFAs) on serum adiponectin concentrations. Women and men between the ages of 18 and 35 years were consecutively accrued into the study. Sixty-one participants were partitioned into normal-weight (15 female and 16 male) or obese (14 female and 16 male) groups. Blood samples were obtained after a 12-hour fast. Differences between groups were determined by analysis of variance with Tukey-Kramer post hoc testing. Serum adiponectin was 26% higher in women compared with men. Body mass index was associated with total serum adiponectin in men (r = -0.63, P < .05) but not women. Adiponectin was correlated with the homeostasis model assessment index in women (r = -0.56, P < .05) and men (r = -0.58, P < .05) and with NEFAs (r = -0.68, P < .05) in men only. After partitioning men and women into normal-weight and obese groups, serum adiponectin was lower and NEFAs were higher in obese men only. Homeostasis model assessment was similar between obese women and men despite higher NEFAs in the obese men. Leptin and plasminogen activator inhibitor-1 were higher in obese participants but were not associated with serum NEFAs. These results suggest that serum NEFAs may reduce adiponectin concentrations independent of their effects on insulin sensitivity in obese young men.

Collaboration


Dive into the Eric P. Plaisance's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Fisher

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Gary R. Hunter

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

J. Kyle Taylor

Auburn University at Montgomery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Carter

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

John C. Garner

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge