Eric P. Whitenton
National Institute of Standards and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric P. Whitenton.
Journal of Manufacturing Science and Engineering-transactions of The Asme | 2000
T W. Hwang; Christopher J. Evans; Eric P. Whitenton; S. Malkin
An investigation is reported on high speed grinding of silicon nitride using electroplated single-layer diamond wheels. This article is concerned with wheel wear and wheel life, and a second paper (ASME J. Manuf Sci. Eng., 122, pp. 42-50) deals with wheel topography and grinding mechanisms. It has been suggested that grinding performance may be enhanced at higher wheel speeds due to a reduction in the undeformed chip thickness. Grinding experiments were conducted at wheel speeds of 85 and 149 m/s with the same removal rate. Contrary to expectations, the faster wheel speed gave no improvements in surface finish, grinding ratio, or wheel life. Microscopic observations of the wheel surface revealed dulling of the abrasive grains by attritious wear, thereby causing a progressive increase in the forces and energy until the end of the useful life of the wheel. For all grinding conditions, a single-valued relationship was found between the wheel wear and the accumulated sliding length between the abrasive grains and the workpiece. A longer wheel life and improved grinding performance can be obtained when the operating parameters are selected so as to reduce the abrasive sliding length per unit volume of material removal.
Ultrasonics | 2000
T.W. Hwang; Eric P. Whitenton; Nelson N. Hsu; Gerald V. Blessing; Christopher J. Evans
Acoustic emission (AE) monitoring of a machining process offers real-time sensory input which could provide tool condition and part quality information that is critical to effective process control. However, the choice of sensor, its placement, and how to process the data and extract useful information are challenging application-specific questions which researchers must consider. Here we report an effort to resolve these questions for the case of high speed grinding of silicon nitride using an electroplated single-layered diamond wheel. A grinding experiment was conducted at a wheel speed of 149 m s-1 and continued until the end of the useful wheel life. AE signal data were then collected for each complete pass at given grinding times throughout the useful wheel life. We found that the amplitude of the AE signal monotonically increases with wheel wear, as do grinding forces and energy. Furthermore, the signal power contained in the AE signal proportionally increases with the associated grinding power, which suggests that the AE signal could provide quantitative information of wheel wear in high-speed grinding, and could also be used to determine when the grinding wheel needs replacement.
Wear | 1988
Eric P. Whitenton; Peter J. Blau
Abstract The purpose of this paper is to investigate some of the methods of determining the wear volume and geometric surface parameters of a scar resulting from sliding either a sphere or spherically tipped pin on a nominally flat surface. There are several broad classes of methods for making this type of measurement. In this paper we will briefly describe these classes in general and then use abrasive wear data to illustrate three specific techniques in detail: two-dimensional analysis, done either manually or with an image analyzer; three-dimensional analysis where the X, Y, Z points came from a stylus-type profiling instrument; three-dimensional analysis where the X, Y, Z points were estimated from a two-dimensional projection obtained from a specially programmed image analyzer.
Journal of Research of the National Institute of Standards and Technology | 2004
Jun-Feng Song; Eric P. Whitenton; David R. Kelley; Robert A. Clary; Li Ma; Susan M. Ballou; M Ols
The National Institute of Standards and Technology Standard Reference Material (SRM) 2460/2461 standard bullets and casings project will provide support to firearms examiners and to the National Integrated Ballistics Information Network (NIBIN) in the United States. The SRM bullet is designed as both a virtual and a physical bullet profile signature standard. The virtual standard is a set of six digitized bullet profile signatures originally traced from six master bullets fired at the Bureau of Alcohol, Tobacco and Firearms (ATF) and the Federal Bureau of Investigation (FBI). By using the virtual signature standard to control the tool path on a numerically controlled diamond turning machine, 40 SRM bullets were produced. A profile signature measurement system was established for the SRM bullets. The profile signature differences are quantified by the maximum of the cross correlation function and by the signature difference between pairs of compared profile signatures measured on different SRM bullets. Initial measurement results showed high reproducibility for both the measurement system and production process of the SRM bullets. A traceability scheme has been proposed to establish the measurement traceability for nationwide bullet signature measurements to NIST, ATF and FBI. Prototype SRM casings have also been developed.
Metrologia | 2013
Brandon M. Lane; Eric P. Whitenton; Viswanathan Madhavan; Alkan Donmez
This paper presents a comprehensive analysis of the uncertainty in the measurement of the peak temperature on the side face of a cutting tool, during the metal cutting process, by infrared thermography. The analysis considers the use of a commercial off-the-shelf camera and optics, typical of what is used in metal cutting research. A physics-based temperature measurement equation is considered and an analytical method is used to propagate the uncertainties associated with measurement variables to determine the overall temperature measurement uncertainty. A Monte Carlo simulation is used to expand on the analytical method by incorporating additional sources of uncertainty such as a point spread function (PSF) of the optics, difference in emissivity of the chip and tool, and motion blur. Further discussion is provided regarding the effect of sub-scenel averaging and magnification on the measured temperature values. It is shown that a typical maximum cutting tool temperature measurement results in an expanded uncertainty of U = 50.1 °C (k = 2). The most significant contributors to this uncertainty are found to be uncertainties in cutting tool emissivity and PSF of the imaging system.
40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing | 2014
Shawn P. Moylan; Eric P. Whitenton; Brandon M. Lane; John A. Slotwinski
Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.
XXVII SPIE International Symposium on Defense and Security, ThermoSense | 2005
Eric P. Whitenton; Robert W. Ivester; Howard W. Yoon
In order to investigate temperatures reached during orthogonal metal cutting, a novel approach for measuring temperatures at the tool-chip interface has been developed based on high-speed thermography. A thermal infrared camera and a visible camera combined through a dichroic beam splitter form the basis for a synchronized visible and infrared imaging system. Pairing the infrared camera with a higher speed visible camera allows for assessment of thermal images with aberrant chip flow or an obstructed view of the tool/chip interface. This feature facilitates the use of the apparatus in machining environments where machining chips or other debris fly about. The measurement setup also includes a force dynamometer, custom timing circuitry, and a high-speed digital oscilloscope to enable timing of frames together with force measurements so that analysis of the infrared images can be compared against the energy levels measured through the cutting forces. The resulting infrared images were converted to radiance temperatures through comparison to a NIST calibrated blackbody. Emissivity was measured by thermally imaging the machining chips heated to known temperatures. Machining experiments were performed at various cutting speeds and at two different infrared wavelengths. Analysis of these experiments gives insight into the relationships between emissivity, temperature, surface condition, infrared wavelength and motion blur. The analysis shows that using the visible, thermal and force data together is a significant improvement over any of these alone. These insights lead to practical guidance for use of infrared imaging systems to image rapidly moving objects.
Machining Science and Technology | 2011
Timothy J. Burns; Steven P. Mates; Richard L. Rhorer; Eric P. Whitenton; D Basak
The Pulse-Heated Kolsky Bar Laboratory at the National Institute of Standards and Technology (NIST) has been developed for the measurement of dynamic properties of metals. With this system, a small sample can be pre-heated from room temperature to several hundred degrees C in less than a second, prior to rapid loading in compression at strain rates up to the order of 104 per second. A major focus of this research program has been on investigating the influence of the heating rate and time at temperature on the flow stress of carbon steels, for application to the modeling and simulation of high-speed machining operations. The unique pulse heating capability of the NIST Kolsky bar system enables flow stress measurements to be obtained under conditions that differ significantly from those in which the test specimens have been pre-heated to a high temperature more slowly, because there is less time for thermally activated microstructural processes such as dislocation annealing, grain growth, and solid state phase transformations to take place. New experimental results are presented on AISI 1075 pearlitic steel samples that were pulse-heated up to and beyond the austenite formation temperature of the material (723 °C). The data show that the flow stress decreased by about 50 % due to a phase transformation in the microstructure of the material from the stronger pearlitic phase to the weaker austenitic phase. As a result, the constitutive response behavior of the material cannot be modeled by a fixed-parameter constitutive model, like the Johnson-Cook flow stress model that is widely used in computer simulations of high-speed machining processes.
Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology | 1996
Theodore V. Vorburger; Jun-Feng Song; C.H.W. Giauque; Thomas B. Renegar; Eric P. Whitenton; M.C. Croarkin
Abstract A stylus-laser surface calibration system was developed to calibrate the NIST sinusoidal roughness Standard Reference Materials (SRM) 2071-2075. Step height standards are used to calibrate the stylus instrument in the vertical direction, and a laser interferometer is mounted on the traversing unit of the stylus instrument to calibrate the instrument in the horizontal direction. The calibration uncertainty (±2δ) for SRM 2075 is ±1.2% for roughness calibrations (( R a = 1 μ m), and ±0.06% for spatial wavelength calibrations ( S m = 800 μ m).
Life Cycle Engineering and Sustainable Development | 2006
Laurent Deshayes; Lawrence A. Welsch; Alkan Donmez; Robert W. Ivester; David E. Gilsinn; Richard L. Rhorer; Eric P. Whitenton; Florian A. Potra
Smart Machining Systems (SMS) are an important part of Life Cycle Engineering (LCE) since its capabilities include: producing the first and every product correct; improving the response of the production system to changes in demand (just in time); realizing rapid manufacturing; and, providing data on an as needed basis. Thereby, SMS improve the performance of production systems and reduce production costs. In addition, an SMS not only has to improve a particular machining process, but it also has to determine the best optimized solution to produce the part faster, better, at lower cost, and with a minimum impact on the environment. In addition, new software tools are required to facilitate the improvement of a machining system, characterized by a high level of expertise or heuristic methods. A global approach requires integrating knowledge/information about the product design, production equipment, and machining process. This paper first discusses the main characteristics and components that are envisioned to be part of SMS. Then, uncertainties associated with models and data and the optimization tasks in SMS are discussed. Robust Optimization is an approach for coping with such uncertainties in SMS. Current use of machining models by production engineers and associated problems are discussed. Finally, the paper discusses interoperability needs for integrating SMS into the product life cycle, as well as the need for knowledge-based systems. The paper ends with a description of future research trends and work plans.