Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Pinloche is active.

Publication


Featured researches published by Eric Pinloche.


Environmental Microbiology | 2011

As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation

Sharon A. Huws; Eun Joong Kim; Michael R. F. Lee; Mark Boileau Scott; John K. S. Tweed; Eric Pinloche; R. John Wallace; Nigel D. Scollan

Microbial biohydrogenation of dietary poly-unsaturated fatty acids (PUFA) to saturated fatty acids (SFA) in the rumen results in the high ratio of SFA/PUFA in ruminant products, such as meat and milk. In vitro, Butyrivibrio proteoclasticus-related bacteria extensively biohydrogenate PUFA to SFA, yet their contribution in the rumen has not been confirmed. The aim of this study was to evaluate the role of Butyrivibrio proteoclasticus group bacteria in ruminal biohydrogenation and to assess the possible role of other bacteria. Fish oil at 0%, 1.5% and 3% dry matter intake was fed to eight Holstein × Friesian steers, in order to elicit changes in the extent of PUFA biohydrogenation. Fatty acid and B. proteoclasticus group 16S rRNA concentrations in rumen digesta were determined. Correlation between digesta 18:0 concentration and B. proteoclasticus group 16S rRNA concentration was low. Terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis (DGGE) coupled with multivariate statistics revealed that many terminal restriction fragments (T-RFs) and DGGE bands were linked to cis-9, trans-11 conjugated linoleic acid (CLA), 18:1 trans-11 and 18:0 ruminal concentrations. MiCA T-RF predictive identification software showed that these linked T-RFs were likely to originate from as yet uncultured bacteria classified as Prevotella, Lachnospiraceae incertae sedis, and unclassified Bacteroidales, Clostridiales and Ruminococcaceae. Sequencing of linked DGGE bands also revealed that as yet uncultured bacteria classified as Prevotella, Anaerovoax (member of the Lachnospiraceae incertae sedis family), and unclassified Clostridiales and Ruminococcaceae may play a role in biohydrogenation.


Journal of Nutrition | 2012

Shifts in the Rumen Microbiota Due to the Type of Carbohydrate and Level of Protein Ingested by Dairy Cattle Are Associated with Changes in Rumen Fermentation

Alejandro Belanche; M. Doreau; Joan E. Edwards; Jon M. Moorby; Eric Pinloche; C. J. Newbold

Balancing energy and nitrogen in the rumen is a key to both profitability and environmental sustainability. Four dairy cows were used in a Latin square experimental design to investigate the effect of severe nitrogen underfeeding (110 vs. 80% of requirements) and the type of carbohydrate consumed [neutral detergent fiber rich (FIB) vs. starch rich (STA)] on the rumen ecosystem. These dietary treatments modified both rumen fermentation and microbial populations. Compared with STA diets, consumption of FIB diets increased bacterial and fungal diversity in the rumen and also increased the concentrations of cellulolytic microorganisms, including protozoa (+38%), anaerobic fungi (+59%), and methanogens (+27%). This microbial adaptation to fiber utilization led to similar digestibility values for the 2 carbohydrate sources and was accompanied by a shift in the rumen fermentation patterns; when the FIB diets were consumed, the cows had greater ruminal pH, ammonia concentrations, and molar proportions of acetate and propionate compared with when they consumed the STA diets. Certain rumen microorganisms were sensitive to a shortage of nitrogen; rumen concentrations of ammonia were 49% lower when the low-protein (LP) diets were consumed as were total bacteria (-13%), anaerobic fungi (-28%), methanogens (-27%), protozoa (-19%), cellulolytic bacteria, and microbial diversity compared with when the high-protein (HP) diets were consumed. As a result, the digestibility of the LP diets was less than that of the HP diets. These findings demonstrated that the rumen microbial ecosystem is directly linked to the rumen fermentation pattern and, to some extent, to the efficiency of diet utilization by dairy cattle.


PLOS ONE | 2014

Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing

Kirsty Dougal; Gabriel de la Fuente; Patricia A. Harris; Susan E. Girdwood; Eric Pinloche; Raymond J. Geor; B.D. Nielsen; Harold C. Schott; S. Elzinga; C. Jamie Newbold

Faecal samples were collected from seventeen animals, each fed three different diets (high fibre, high fibre with a starch rich supplement and high fibre with an oil rich supplement). DNA was extracted and the V1–V2 regions of 16SrDNA were 454-pyrosequenced to investigate the faecal microbiome of the horse. The effect of age was also considered by comparing mature (8 horses aged 5–12) versus elderly horses (9 horses aged 19–28). A reduction in diversity was found in the elderly horse group. Significant differences between diets were found at an OTU level (52 OTUs at corrected Q<0.1). The majority of differences found were related to the Firmucutes phylum (37) with some changes in Bacteroidetes (6), Proteobacteria (3), Actinobacteria (2) and Spirochaetes (1). For the forage only diet,with no added starch or oil, we found 30/2934 OTUs (accounting for 15.9% of sequences) present in all horses. However the core (i.e. present in all horses) associated with the oil rich supplemented diet was somewhat smaller (25/3029 OTUs, 10.3% ) and the core associated with the starch rich supplemented diet was even smaller (15/2884 OTUs, 5.4% ). The core associated with samples across all three diets was extremely small (6/5689 OTUs accounting for only 2.3% of sequences) and dominated by the order Clostridiales, with the most abundant family being Lachnospiraceae. In conclusion, forage based diets plus starch or oil rich complementary feeds were associated with differences in the faecal bacterial community compared with the forage alone. Further, as observed in people, ageing is associated with a reduction in bacterial diversity. However there was no change in the bacterial community structure in these healthy animals associated with age.


FEMS Microbiology Ecology | 2010

The persistence of bacterial and methanogenic archaeal communities residing in the rumen of young lambs

David Rafael Yáñez-Ruiz; Beatriz Macías; Eric Pinloche; C. J. Newbold

The aim of this experiment was to study the persistence in time of bacterial and methanogenic archaeal communities that establish in the rumen of lambs fed two different diets at weaning. Twenty ewes with single lambs were used in two phases. In phase I, 10 lambs had access only to grass hay (H group). The other 10 lambs had free access to concentrate and grass hay (C group). After 20 weeks, five lambs from each group were slaughtered and rumen samples were kept for analysis. In phase II, the remaining lambs were grouped together and fed grass plus concentrate for 4 months and then slaughtered, and rumen samples were collected for analysis. Terminal restriction fragment length polymorphism analysis showed a different bacterial and methanogen population established in the rumen of H and C lambs in phase I. These differences disappeared for methanogens after both groups were fed the same diet for 4 months; however, the total bacterial community remained different for the H and C samples. Our results suggest that some of the differences in the microbial populations that establish in animals fed different diets at weaning persist in the long term, which provides the possibility of programming the microbial populations in the adult animal.


PLOS ONE | 2013

The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle.

Eric Pinloche; Neil R. McEwan; Jean-Philippe Marden; Corinne Bayourthe; Eric Auclair; C. Jamie Newbold

It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d) of corn silage (61% of DM), concentrates (30% of DM), dehydrated alfalfa (9% of DM) and a minerals and vitamins mix (1% of DM). The effect of yeast (BIOSAF SC 47, Lesaffre Feed Additives, France; 0.5 or 5 g/d) was compared to a control (no additive) in a 3×3 Latin square design. The variation in the rumen bacterial community between treatments was assessed using Serial Analysis of V1 Ribosomal Sequence Tag (SARST-V1) and 454 pyrosequencing based on analysis of the 16S rRNA gene. Compared to the control diet supplementation of probiotic yeast maintained a healthy fermentation in the rumen of lactating cattle (higher VFA concentration [high yeast dose only], higher rumen pH, and lower Eh and lactate). These improvements were accompanied with a shift in the main fibrolytic group (Fibrobacter and Ruminococcus) and lactate utilising bacteria (Megasphaera and Selenomonas). In addition we have shown that the analysis of short V1 region of 16s rRNA gene (50–60 bp) could give as much phylogenetic information as a longer read (454 pyrosequencing of 250 bp). This study also highlights the difficulty of drawing conclusions on composition and diversity of complex microbiota because of the variation caused by the use of different methods (sequencing technology and/or analysis).


PLOS ONE | 2013

Identification of a core bacterial community within the large intestine of the horse.

Kirsty Dougal; Gabriel de la Fuente; Patricia A. Harris; Susan E. Girdwood; Eric Pinloche; C. Jamie Newbold

The horse has a rich and complex microbial community within its gastrointestinal tract that plays a central role in both health and disease. The horse receives much of its dietary energy through microbial hydrolysis and fermentation of fiber predominantly in the large intestine/hindgut. The presence of a possible core bacterial community in the equine large intestine was investigated in this study. Samples were taken from the terminal ileum and 7 regions of the large intestine from ten animals, DNA extracted and the V1-V2 regions of 16SrDNA 454-pyrosequenced. A specific group of OTUs clustered in all ileal samples and a distinct and different signature existed for the proximal regions of the large intestine and the distal regions. A core group of bacterial families were identified in all gut regions with clear differences shown between the ileum and the various large intestine regions. The core in the ileum accounted for 32% of all sequences and comprised of only seven OTUs of varying abundance; the core in the large intestine was much smaller (5-15% of all sequences) with a much larger number of OTUs present but in low abundance. The most abundant member of the core community in the ileum was Lactobacillaceae, in the proximal large intestine the Lachnospiraceae and in the distal large intestine the Prevotellaceae. In conclusion, the presence of a core bacterial community in the large intestine of the horse that is made up of many low abundance OTUs may explain in part the susceptibility of horses to digestive upset.


PLOS ONE | 2014

Pros and Cons of Ion-Torrent Next Generation Sequencing versus Terminal Restriction Fragment Length Polymorphism T-RFLP for Studying the Rumen Bacterial Community

Gabriel de la Fuente; Alejandro Belanche; Susan E. Girwood; Eric Pinloche; Toby J. Wilkinson; C. Jamie Newbold

The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction of different protozoal populations, using both next generation sequencing (NGS: Ion Torrent PGM) and terminal restriction fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS and T-RFLP in terms of richness and diversity with R values of 0.836 and 0.781 for richness and Shannon-Wiener index, respectively. Dendrograms for both datasets were also highly correlated (Mantel test = 0.742). Eighteen OTUs and ten genera were significantly impacted by the addition of rumen protozoa, with an increase in the relative abundance of Prevotella, Bacteroides and Ruminobacter, related to an increase in free ammonia levels in the rumen. Our findings suggest that classic fingerprinting methods are still valuable tools to study microbial diversity and structure in complex environments but that NGS techniques now provide cost effect alternatives that provide a far greater level of information on the individual members of the microbial population.


PLOS ONE | 2013

Identification and Characterization of Three Novel Lipases Belonging to Families II and V from Anaerovibrio lipolyticus 5ST

Florence Privé; Naheed Kaderbhai; Susan E. Girdwood; Hilary J. Worgan; Eric Pinloche; Nigel D. Scollan; Sharon A. Huws; C. Jamie Newbold

Following the isolation, cultivation and characterization of the rumen bacterium Anaerovibrio lipolyticus in the 1960s, it has been recognized as one of the major species involved in lipid hydrolysis in ruminant animals. However, there has been limited characterization of the lipases from the bacterium, despite the importance of understanding lipolysis and its impact on subsequent biohydrogenation of polyunsaturated fatty acids by rumen microbes. This study describes the draft genome of Anaerovibrio lipolytica 5ST, and the characterization of three lipolytic genes and their translated protein. The uncompleted draft genome was 2.83 Mbp and comprised of 2,673 coding sequences with a G+C content of 43.3%. Three putative lipase genes, alipA, alipB and alipC, encoding 492-, 438- and 248- amino acid peptides respectively, were identified using RAST. Phylogenetic analysis indicated that alipA and alipB clustered with the GDSL/SGNH family II, and alipC clustered with lipolytic enzymes from family V. Subsequent expression and purification of the enzymes showed that they were thermally unstable and had higher activities at neutral to alkaline pH. Substrate specificity assays indicated that the enzymes had higher hydrolytic activity against caprylate (C8), laurate (C12) and myristate (C14).


Journal of Animal Science | 2012

Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis

Alejandro Belanche; G. de la Fuente; Eric Pinloche; C. J. Newbold; J. Balcells

Accurate estimates of microbial synthesis in the rumen are vital to optimize ruminant nutrition. Liquid- (LAB) and solid-associated bacterial fractions (SAB) harvested from the rumen are generally considered as microbial references when microbial yield is calculated; however, factors that determine their composition are not completely understood. The aim of this study was to evaluate the effect of diet and absence or presence of rumen protozoa on the rumen microbial community. It was hypothesized that these treatments could modify the composition and representativeness of LAB and SAB. Twenty twin lambs (Ovis aries) were used; one-half of the twins were kept protozoa-free, and each respective twin sibling was faunated. At 6 mo of age, 5 animals from each group were randomly allocated to the experimental diets consisting of either alfalfa hay as the sole diet, or 50:50 mixed with ground barley grain. After 15 d of adaptation to the diet, animals were euthanized, rumen and abomasum contents were sampled, and LAB and SAB isolated. The presence of protozoa buffered the effect of diet on the rumen bacterial population. Faunated animals fed alfalfa hay had a greater abundance of F. succinogenes, anaerobic fungi and methanogens, as well as an enhanced rumen bacterial diversity. Cellulolytic bacteria were more abundant in SAB, whereas the abomasal abundance of most of the microorganisms studied was closer to those values observed in LAB. Rumen and abomasal samples showed similar bacterial DNA concentrations, but the fungal and protozoal DNA concentration in the abomasum was only 69% and 13% of that observed in the rumen, respectively, suggesting fungal and protozoal sequestration in the rumen or possible preferential degradation of fungal and protozoal DNA in the abomasum, or both. In conclusion, absence of protozoa and type of diet extensively modified the chemical composition of LAB and SAB as a consequence of changes in the microbial composition of these fractions.


FEMS Microbiology Ecology | 2015

Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique

Alejandro Belanche; Eric Pinloche; David Preskett; C. Jamie Newbold

This study investigates the effects of supplementing a control diet (CON) with chitosan (CHI) or ivy fruit saponins (IVY) as natural feed additives. Both additives had similar abilities to decrease rumen methanogenesis (–42% and –40%, respectively) using different mechanisms: due to its antimicrobial and nutritional properties CHI promoted a shift in the fermentation pattern towards propionate production which explained about two thirds of the decrease in methanogenesis. This shift was achieved by a simplification of the structure in the bacterial community and a substitution of fibrolytic (Firmicutes and Fibrobacteres) by amylolytic bacteria (Bacteroidetes and Proteobacteria) which led to greater amylase activity, lactate and microbial protein yield with no detrimental effect on feed digestibility. Contrarily, IVY had negligible nutritional properties promoting minor changes in the fermentation pattern and on the bacterial community. Instead, IVY modified the structure of the methanogen community and decreased its diversity. This specific antimicrobial effect of IVY against methanogens was considered its main antimethanogenic mechanism. IVY had however a negative impact on microbial protein synthesis. Therefore, CHI and IVY should be further investigated in vivo to determine the optimum doses which maintain low methanogenesis but prevent negative effects on the rumen fermentation and animal metabolism.

Collaboration


Dive into the Eric Pinloche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil R. McEwan

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge